Dominant energy subspaces of statistical systems are defined with the help of restrictive conditions on various characteristics of the energy distribution, such as the probability density and the fourth order Binder's cumulant. Our analysis generalizes the ideas of the critical minimum energy subspace (CRMES) technique, applied previously to study the specific heat's finite-size scaling. Here, we illustrate alternatives that are useful for the analysis of further finite-size anomalies and the behavior of the corresponding dominant subspaces is presented for the two-dimensional (2D) Baxter-Wu and the 2D and 3D Ising models. In order to show that a CRMES technique is adequate for the study of magnetic anomalies, we study and test simple methods which provide the means for an accurate determination of the energy-order-parameter (E,M) histograms via Wang-Landau random walks. The 2D Ising model is used as a test case and it is shown that high-level Wang-Landau sampling schemes yield excellent estimates for all magnetic properties. Our estimates compare very well with those of the traditional Metropolis method. The relevant dominant energy subspaces and dominant magnetization subspaces scale as expected with exponents alpha/nu and gamma/nu, respectively. Using the Metropolis method we examine the time evolution of the corresponding dominant magnetization subspaces and we uncover the reasons behind the inadequacy of the Metropolis method to produce a reliable estimation scheme for the tail regime of the order-parameter distribution.
We present a variation of the N-fold way algorithm, which improves efficiency when one combines the Wang–Landau method with the N-fold way. It is shown that the new version of the N-fold way algorithm has good performance when used for importance sampling and compared with the usual N-fold version or the Metropolis algorithm. The new N-fold algorithm combined with the Wang–Landau method is applied to the square Ising model using a multi-range approach. A comparative study is presented for all these algorithms, Wang–Landau and the two combined versions with the N-fold way. The role of boundary effects is discussed.
The influence of random site dilution on the critical properties of the two-dimensional Ising model on a square lattice was explored by Monte Carlo simulations with the Wang-Landau sampling. The lattice linear size was L = 20 − 120 and the concentration of diluted sites q = 0.1, 0.2, 0.3. Its pure version displays a second-order phase transition with a vanishing specific heat critical exponent α, thus, the Harris criterion is inconclusive, in that disorder is a relevant or irrelevant perturbation for the critical behavior of the pure system. The main effort was focused on the specific heat and magnetic susceptibility. We have also looked at the probability distribution of susceptibility, pseudocritical temperatures and specific heat for assessing self-averaging. The study was carried out in appropriate restricted but dominant energy subspaces. By applying the finite-size scaling analysis, the correlation length exponent ν was found to be greater than one, whereas the ratio of the critical exponents (α/ν) is negative and (γ/ν) retains its pure Ising model value supporting weak universality.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.