The ongoing COVID19 outbreak originated in the city of Wuhan, China has caused a significant damage to the world population and the global economy. It has claimed more than 50,000 lives worldwide and more than one million of people have been infected as of 04 th April 2020.In Sri Lanka, the first case of COVI19 was reported late January 2020 was a Chinese national and the first local case was identified in the second week of March. Since then, the government of Sri Lanka introduced various sequential measures to improve social distancing such as closure of schools and education institutes, introducing work from home model to reduce the public gathering, introducing travel bans to international arrivals and more drastically, imposed island wide curfew expecting to minimize the burden of the disease to the Sri Lankan health system and the entire community. Currently, there are 159 cases with five fatalities and also reported that 24 patients are recovered and discharged from hospitals.In this study, we use the SEIR conceptual model and its modified version by decomposing infected patients into two classes; patients who show mild symptoms and patients who tend to face severe respiratory problems and are required to treat in intensive care units. We numerically simulate the models for about five months period considering three critical parameters of COVID transmission mainly in the Sri Lankan context; efficacy of control measures, rate of overseas imported cases and time to introduce social distancing measures by the respective authorities.
In order to bring the new coronavirus pandemic in the country under control, the government of Sri Lanka implemented a set of control strategies including social distancing, quarantine, lockdowns, travel restrictions, and isolation of villages. The aim of this study is to investigate the effectiveness of the overall control process with the aid of classical compartment models and network models. Our results indicate that the prevailing control strategies are effective with at least 50% contact rate reduction or with at least 40% isolation of the contact history of infected population.
The COVID-19 pandemic has resulted in increasing number of infections and deaths on a daily basis. There is no specific treatment or vaccine identified and the focus has been preventive measures based on statistical and mathematical models. These have relied on analyzing the behavior of populations and characteristics of the infection and applying modelling techniques. The analysis of epidemiological curve fitting on number of daily infections across affected countries could give useful insights on the characteristics of the epidemic. A variety of phenomenological models are available to capture dynamics of disease spread and growth. Data for this study used the number of daily new infections and cumulative number of infections in COVID-19 in three selected countries, Sri Lanka, Italy and Hebei province of China, from the first day of appearance of cases to 20 th April 2020. In this study Gompertz, Logistic and Exponential growth curves were fitted on cumulative number of infections across countries. Akaike's information criteria (AIC) was used in determining the best fitting curve for each country. Results revealed that the most appropriate growth curves for Sri Lanka, Italy and China-Hebei are Exponential, Gompertz and Logistic curves respectively. The overall growth rate and final epidemic size evaluated from best models for the three countries and short-term forecasts were also generated. Log incidences over time in each country were regressed before and after the identified peak time of the respective outbreaks of countries. Hence, doubling time/halving time together with daily growth rates and predictions were estimated. Findings altogether demonstrate that outbreak seems extinct in Hebei-China whereas further transmissions are possible in Sri Lanka. In Italy, current outbreak transmits in a decreasing rate.
The COVID-19 pandemic has resulted in increasing number of infections and deaths every day. Lack of specialized treatments for the disease demands preventive measures based on statistical/mathematical models. The analysis of epidemiological curve fitting, on number of daily infections across affected countries, provides useful insights on the characteristics of the epidemic. A variety of phenomenological models are available to capture the dynamics of disease spread and growth. The number of daily new infections and cumulative number of infections in COVID-19 over four selected countries, namely, Sri Lanka, Italy, the United States, and Hebei province of China, from the first day of appearance of cases to 2nd July 2020 were used in the study. Gompertz, logistic, Weibull, and exponential growth curves were fitted on the cumulative number of infections across countries. AIC, BIC, RMSE, and R 2 were used to determine the best fitting curve for each country. Results revealed that the most appropriate growth curves for Sri Lanka, Italy, the United States, and China (Hebei) are the logistic, Gompertz, Weibull, and Gompertz curves, respectively. Country-wise, overall growth rate, final epidemic size, and short-term forecasts were evaluated using the selected model. Daily log incidences in each country were regressed before and after the identified peak time of the respective outbreak of epidemic. Hence, doubling time/halving time together with daily growth rates and predictions was estimated. Findings and relevant interpretations demonstrate that the outbreak seems to be extinct in Hebei, China, whereas further transmissions are possible in the United States. In Italy and Sri Lanka, current outbreaks transmit in a decreasing rate.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.