Highly cross-linked zinc oxide (ZnO) with the nanorod morphology of tetra-pods was successfully prepared using a microwave irradiation (MWI) technique. In comparison with the available conventional techniques, the MWI technique has the advantage of producing different morphological structures with high purity and in a shorter reaction time. These tetra-pods consist of a ZnO core in the zinc blende from which four ZnO arms emerge in the wurtzite structure. In this investigation, the effects of irradiation times and the growth mechanism of ZnO nanotetra-pods were discussed. The structural, morphological and optical properties of ZnO nanorods were investigated by field emission scanning electron microscopy, X-ray diffraction, an ultra violet visible spectrometry and energy-dispersive spectroscopy. The electrochemical corrosion behaviours of an AZ91-grade Mg alloy and a ZnO/PN nanotetra-pod-coated Mg alloy were investigated. The Tafel plot revealed that the corrosion of Mg drastically decreased on coating with a thin layer of ZnO nanotetra-pods and PN (Mg/PN/ZnO) compared to Mg in a KOH electrolyte.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.