In this paper we propose a novel method for splice site prediction using the maximum likelihood model. We performed maximum likelihood over the acceptor and donor datasets, and calculated sensitivity to measure the prediction performance. Then, by aggressive pruning of less informative nucleotide sites, while maintaining the high sensitivity of the method, we improved the model's performance in terms of the computational speed. In addition, after pruning fewer nucleotide sites need to be tagged, which in turn simplifies the development of an assay. The proposed method was tested on the human splice dataset. The results indicate that the proposed method was successful at splice site prediction with optimal sensitivity.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.