An attempt has been made in the present investigation to determine the acute toxicity of hexavalent chromium and its toxicological effects on survival, physiological, hematological and biochemical parameters of the widely consumed Indian major carp, Labeo rohita. Short-term acute toxicity tests were performed adopting renewal bioassay technique (USEPA, 1975) over a period of 96 h, using different concentrations of potassium dichromate to the fish and the 96 h LC[50] value was found to be 111.45 mg/l (Cr(+6) as 39.40 mg/l). ANOVA results showed that the normal respiratory activity of the fish was significantly affected and there is a depression in the metabolic rate at the end of 24, 48, 72 and 96 h exposure. The metal also induced significant decrease (p<0.001) in the hematological parameters of the fish like total erythrocyte count, hemoglobin percent and absolute value Mean cell hemoglobin (MCH) both at the end of 24h and 96 h exposure indicating anemia. Appreciable decline in the biochemical profiles such as total glycogen, total lipids and total protein contents of the fish was also observed. However, the decrease in protein content was significant only at the end of 96 h. This study reflects the extent of the toxic effects of hexavalent chromium and the metal induced cumulative deleterious effects at various functional levels in the widely consumed freshwater fish, Labeo rohita.
Chromium (Cr) is a naturally occurring element found in rocks, animals, plants, and soil, predominantly in its insoluble trivalent form [Cr(III)]. Intense industrialization and other anthropogenic activities have led to the global occurrence of soluble Cr(VI), which is readily leached from soil to groundwater or surface water, in concentrations above permissible levels. The ecotoxicology of Cr(VI) is linked to its environmental persistence and the ability to induce a variety of adverse effects in biologic systems, including fish. In aquatic ecosystems, Cr(VI) exposure poses a significant threat to aquatic life. This paper reviews the fate and transport of Cr(VI) in the environment and its acute and chronic effects on fish. We also discuss Cr(VI) toxicity at the cellular, biochemical, and genetic levels. An attempt is made in this review to comprehend the staggered data on the toxic effects of Cr(VI) to various species of fish. Such data are extremely useful to the scientific community and public officials involved in health risk assessment and management of environmental contaminants as a guide to the best course of action to restore ecosystems and, in turn, to preserve human health.
Static-renewal bioassays [Methods for acute toxicity tests with fish, macro-invertebrates and amphibians: USEPA, ERS, EPA 660/3 75-009 (1975)] were carried out on Esomus danricus exposed to sub-lethal (0.55 mg/l) and lethal (5.5 mg/l) concentrations of copper. The 96-h median lethal concentration (LC 50 ) was 5.5 mg/l. Biochemical stress responses, such as visceral superoxide dismutase (SOD) and catalase (CAT) activities, were measured during this 96-h period. Malondialdehyde, a product of lipid peroxidation, was present at elevated levels in the visceral tissue of copper-exposed fish. Copper was found to be highly toxic to the fish and induced significant declines (p < 0.05-0.001) in all of the biochemical profiles studied, demonstrating a linear and positive correlation with both the concentration and duration of exposure to copper. In E. danricus, CAT appeared to be more sensitive to copper exposure (p < 0.001) than SOD at both lethal and sub-lethal levels. These results indicate that antioxidant responses can be employed as biomarkers of oxidative stress for this species in aquatic environments contaminated with copper.
Arsenic and hexavalent chromium toxicity results from their ability to interact with sulfahydryl groups of proteins and enzymes, and to substitute phosphorus in a variety of biochemical reactions. Alanine aminotransferase (ALT; E.C: 2.6.1.2) and Aspartate amino transferase (AST; EC 2.6.1.1) play a crucial role in transamination reactions and can be used as potential biomarkers to indicate hepatotoxicity and cellular damage. While histopathological studies in liver tissue require more time and expertise, simple and reliable biochemical analysis of ALT and AST can be used for a rapid assessment of tissue and cellular damage within 96 h. The main objective of this study was to determine the acute effects of arsenic and hexavalent chromium on the activity of ALT and AST in the Indian major carp, Labeo rohita for 24 h and 96 h. Significant increase in the activity of ALT (P < 0.01) from controls in arsenic exposed fish indicates serious hepatic damage and distress condition to the fish. However, no such significant changes were observed in chromium-exposed fish suggesting that arsenic is more toxic to the fish. These findings indicate that ALT and AST are candidate biomarkers for arsenic-induced hepatotoxicity in Labeo rohita.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.