Avian influenza virus strains representing most hemagglutinin (HA) subtypes were compared with human influenza A (H1N1,H3N2) and B virus isolates, including those with no history of passaging in embryonated hen's eggs, for their ability to bind free N-acetylneuraminic acid (Neu5Ac) and sialylollgosaccharides in a competitive binding assay and to attach to gangliosides in a solid-phase adsorption assay. The avian viruses, irrespective of their HA subtype, showed a higher affinity for sialyl-3-lactose and the other Neu5Ac2-3Gal-terminated oligosaccharides and a lower affinity for sialyl-6-lactose than for free Neu5Ac, indicative of specific interactions between the HA and the 3-linked Gal and poor accommodation of 6-linked Gal in the avian receptor-binding site (RBS). Human H1 and H3 strains, by contrast, were unable to bind to 3-linked Gal, interacting instead with the asialic portion of sialyl-6-(N-acetyllactosamine). Different parts of this moiety were recognized by H3 and H1 subtype viruses (Gal and GlcNAc, respectively). Comparison of the HA amino acid sequences revealed that residues in positions. 138, 190, 194, 225, 226, and 228 are conserved in the avian RBS, while the human HAs harbor substitutions at these positions. A characteristic feature of avian viruses was their binding to Neu5Ac2-3Gal-containing gangliosides. This property of avian precursor viruses was preserved in early human H3 isolates, but was gradually lost with further circulation of the H3 HA in humans. Consequently, later human H3 isolates, as well as H1 and type B human strains, were unable to bind to short Neu5Ac2-3Gal-terminated gangliosides, an incompatibility that correlated with higher glycosylation of the HA globular head of human viruses. Our results suggest that the RBS is highly conserved among HA subtypes of avian influenza virus, while that of human viruses displays distinctive genotypic and phenotypic variability.
Synthetic sialylglycoconjugates bearing 3'-sialyllactose, 6'-sialyllactose, or 6'-sialyl(N-acetyllactosamine) moieties attached to the polyacrylic acid carrier (P-3-SL, P-6-SL, and P-6-SLN, respectively) were prepared and tested for their ability to bind to influenza virus isolates from different hosts in a competitive solid phase assay. The virus panel included egg-grown avian and porcine strains, as well as human viruses isolated and propagated solely in mammalian (MDCK) cells and their egg-adapted variants. A clear correlation was observed between the pattern of virus binding of two glycopolymers, P-3-SL and P-6-SLN, and the host species from which the virus was derived. Avian isolates displayed a high binding affinity for P-3-SL and a two to three orders of magnitude lower affinity for P-6-SLN. By contrast, all non-egg-adapted human A and B viruses bound P-6-SLN strongly but did not bind P-3-SL. Unlike the "authentic" human strains, their egg-adapted counterparts acquired an ability to bind P-3-SL, indicative of a shift in the receptor-binding phenotype toward the recognition of Neu5Ac2-3Gal-terminated sugar sequences. Among the porcine viruses and human isolates with porcine hemagglutinin, few displayed an avian-like binding phenotype, while others differed from both avian and human strains by a reduced ability to discriminate between P-3-SL and P-6-SLN. Our data show that sialylglycopolymers may become a useful tool in studies on molecular mechanisms of interspecies transfer, tissue specificity, and other structure-function relationships of the influenza virus hemagglutinin.
We studied receptor-binding properties of influenza virus isolates from birds and mammals using polymeric conjugates of sialooligosaccharides terminated with common Neu5Ac alpha2-3Gal beta fragment but differing by the structure of the inner part of carbohydrate chain. Viruses isolated from distinct avian species differed by their recognition of the inner part of oligosaccharide receptor. Duck viruses displayed high affinity for receptors having beta1-3 rather than beta1-4 linkage between Neu5Ac alpha2-3Gal-disaccharide and penultimate N-acetylhexosamine residue. Fucose and sulfate substituents at this residue had negative and low effect, respectively, on saccharide binding to duck viruses. By contrast, gull viruses preferentially bound to receptors bearing fucose at N-acetylglucosamine residue, whereas chicken and mammalian viruses demonstrated increased affinity for oligosaccharides that harbored sulfo group at position 6 of (beta1-4)-linked GlcNAc. These data suggest that although all avian influenza viruses preferentially bind to Neu5Ac alpha2-3Gal-terminated receptors, the fine receptor specificity of the viruses varies depending on the avian species. Further studies are required to determine whether observed host-dependent differences in the receptor specificity of avian viruses can affect their ability to infect humans.
Influenza A viruses of different subtypes were isolated from fecal samples of ducks in their nesting areas in Siberia in summer from 1996 to 1998. Phylogenetic analysis of the NP genes of the isolates in Siberia and those in Hokkaido, Japan on their flyway of migration from Siberia to the south in autumn revealed that they belong to the Eurasian lineage of avian influenza viruses. It is noted that the genes of the isolates in Siberia are closely related to those of H5N1 influenza virus strains isolated from chickens and humans in Hong Kong in 1997 as well as to those of isolates from domestic birds in southern China. The results indicate that influenza viruses perpetuated in ducks nesting in Siberia should have contributed genes in the emergence of the H5N1 virus in Hong Kong. Vaccine prepared from avirulent A/duck/Hokkaido/4/96 (H5N3) influenza virus was potent enough to protect mice from challenge with lethal dose of the pathogenic H5N1 virus [19]. Intensive surveillance study of aquatic birds especially in Siberia is, therefore, stressed to provide information on the future pandemic influenza virus strains and for vaccine preparation.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.