A DFT study on structural, vibrational properties, and quasiparticle band structure of solid nitromethane Using highly accurate FP-LAPW method with GGA approximation structural, electronic and elastic properties of cubic CaTiO 3 have been calculated from 0-120 GPa range of pressure. It is observed that lattice constant, bond length and anisotropy factor decrease with increase in pressure. Also the brittle nature and indirect band-gap of the compound become ductile and direct band-gap respectively at 120 GPa. Moduli of elasticity, density of the material, Debye temperature and wave elastic wave velocities increase with increase in pressure. Spin dependent DOS's plots show invariant anti-ferromagnetic nature of the compound under pressure. Our calculated results are in good agreement with available theoretical and experimental results. C 2015 Author(s). All article content, except where otherwise noted, is licensed under a Creative Commons Attribution 3.0 Unported License. [http://dx.
In this article, density functional theory has been used to investigate the structural and optoelectronic properties of PbZrO3 (PZO) under pressure from 0 to 350 GPa. In order to achieve ground state structural stability, generalized gradient approximations has been utilized. By studying electronic properties, indirect band-gap nature of PZO appears to change at 15 GPa to direct band-gap. Optical analysis include under pressure responses of real and imaginary parts of dielectric function, optical conductivity, optical absorption coefficient, energy loss function, refractive index, reflectivity and extinction coefficient. Most of the results have been found to be consistent with literature. Study reveals that static dielectric constant and band-gap are in accordance with the Penn model which validates our computed results. Moreover, static dielectric constant and static refractive index directly increases with pressure. Material preserves its positive value of refractive index at all pressures and therefore, it is not a negative index metamaterial. Plasma frequency increases directly with pressure that destabilize the under study material. Our results could be very useful for developing novel optoelectronic devices based on PZO suitable to work under extreme conditions.
In continuation of our recent report on molybdates [Appl. Phys. A
124, 44 (2018)], the structural, electronic, elastic, and optical properties of ZMoO3 (Z = Ba and Sr) molybdates are investigated under pressure (10 GPa–50 GPa) comprehensively by deploying the density functional theory. Our investigations show that the studied compounds exhibit stable cubic phase with metallic attributes. The thermodynamic parameters such as enthalpy of formation, Debye, and melting temperatures of the compounds are observed to increase with pressure. While the Grüninsen parameter and the coefficient of super-plastic deformation decrease as the pressure increases. Mechanical properties elucidate an increase in measured values of hardness, bulk, shear, and youngʼs moduli with pressure. Our results suggest that the studied compounds are useful in high pressure optoelectronic devices. The optical properties of BaMoO3 (BMO) and SrMoO3 (SMO) are computed for the radiation of up to 35 eV. The present compounds show beneficial optical applications in the anti-reflection coating, lenses, and the high avoiding solar heating applications in the variant applied pressure.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.