This paper presents a basic design and experimental results of a crack detection method on X-Ray images. The proposed method utilizes a customized algorithm wherein a section of the X-Ray image suspected to contain the irregularity, like a crack in the bone, is separated from the rest of the X-Ray image and the cropped image is altered so as to make the presence of irregularities more easily detectable. This primarily involves the detection and expansion of the irregularity in terms of size, or the number of pixels it occupies in the image. The algorithm helps isolate the irregularity and selectively dilate it, without interfering with the other parts of the image, thereby making it more easily visible to the human eye. This operation is accomplished by a Matlab supported operation called dilation. In a grayscale XRay image, the pixels constituting the image may take several intensity values. This obscures the distinction between boundaries, impeding visual diagnosis. This problem is avoided by converting the grayscale image to a binary image, creating a clear distinction between boundaries. This paper investigates the possibility of employing this approach to provide detection and selective amplification of irregularities given the region in the image in which the irregularity is suspected to lie. Then the processed image is compared with the original input image. The application of the proposed method for enhancing visual diagnosis is demonstrated by examples.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.