Nuclear factor-kappaB (NF-kappaB) is a key transcription factor in inflammatory, anti-apoptotic and immune processes. The ubiquitin pathway is crucial in regulating the NF-kappaB pathway. We have found that the LUBAC ligase complex, composed of the two RING finger proteins HOIL-1L and HOIP, conjugates a head-to-tail-linked linear polyubiquitin chain to substrates. Here, we demonstrate that LUBAC activates the canonical NF-kappaB pathway by binding to NEMO (NF-kappaB essential modulator, also called IKKgamma) and conjugates linear polyubiquitin chains onto specific Lys residues in the CC2-LZ domain of NEMO in a Ubc13-independent manner. Moreover, in HOIL-1 knockout mice and cells derived from these mice, NF-kappaB signalling induced by pro-inflammatory cytokines such as TNF-alpha and IL-1beta was suppressed, resulting in enhanced TNF-alpha-induced apoptosis in hepatocytes of HOIL-1 knockout mice. These results indicate that LUBAC is involved in the physiological regulation of the canonical NF-kappaB activation pathway through linear polyubiquitylation of NEMO.
Cpdm (chronic proliferative dermatitis) mice develop chronic dermatitis and an immunodeficiency with increased serum IgM, symptoms that resemble those of patients with X-linked hyper-IgM syndrome and hypohydrotic ectodermal dysplasia (XHM-ED), which is caused by mutations in NEMO (NF-κB essential modulator; also known as IKBKG). Spontaneous null mutations in the Sharpin (SHANK-associated RH domain interacting protein in postsynaptic density) gene are responsible for the cpdm phenotype in mice. SHARPIN shows significant similarity to HOIL-1L (also known as RBCK1), a component of linear ubiquitin chain assembly complex (LUBAC), which induces NF-κB activation through conjugation of linear polyubiquitin chains to NEMO. Here, we identify SHARPIN as an additional component of LUBAC. SHARPIN-containing complexes can linearly ubiquitinate NEMO and activated NF-κB. Thus, we re-define LUBAC as a complex containing SHARPIN, HOIL-1L, and HOIP (also known as RNF31). Deletion of SHARPIN drastically reduced the amount of LUBAC, which resulted in attenuated TNF-α- and CD40-mediated activation of NF-κB in mouse embryonic fibroblasts (MEFs) or B cells from cpdm mice. Considering the pleomorphic phenotype of cpdm mice, these results confirm the predicted role of LUBAC-mediated linear polyubiquitination in NF-κB activation induced by various stimuli, and strongly suggest the involvement of LUBAC-induced NF-κB activation in various disorders.
Caspase-8 plays the role of initiator in the caspase cascade and is a key molecule in death receptor-induced apoptotic pathways. To investigate the physiological roles of caspase-8 in vivo, we have generated caspase-8-deficient mice by gene targeting. The first signs of abnormality in homozygous mutant embryos were observed in extraembryonic tissue, the yolk sac. By embryonic day (E) 10.5, the yolk sac vasculature had begun to form inappropriately, and subsequently the mutant embryos displayed a variety of defects in the developing heart and neural tube. As a result, all mutant embryos died at E11.5. Importantly, homozygous mutant neural and heart defects were rescued by ex vivo wholeembryo culture during E10.5 ± E11.5, suggesting that these defects are most likely secondary to a lack of physiological caspase-8 activity. Taken together, these results suggest that caspase-8 is indispensable for embryonic development.
Caspase-8, a member of the caspase family, plays an important role in apoptotic signal transduction in mammals. Here we report the identification and characterization of the caspase-8 (casp8) gene in the zebrafish Danio rerio. The zebrafish casp8 gene has a genomic organization similar to mammalian casp8 genes, consisting of 10 exons. By chromosome mapping, we found that casp8 maps on linkage group 6 (LG6), a zebrafish chromosome segment orthologous to the long arm of human Chr. 2, which carries CASP8. In contrast, the zebrafish casp10-like gene and the cflar gene separately localize on LG9 and LG11, respectively, and these genes form a cluster with CASP8 on the human chromosome. This chromosomal segregation is unique to fish but not other vertebrates. Furthermore, we examined the function of zebrafish Casp8 protein in mammalian cells, and showed that it has pro-apoptotic activity when overexpressed. In addition, this molecule was capable of transmitting apoptotic signals mediated through not only Fas but also the TNF receptor in mouse Casp8-deficient cells. Expression analysis showed that casp8 is maternally expressed, and transcripts continue to be present throughout embryogenesis and into larval stages. These results show that zebrafish casp8 has a structure and function similar to mammalian CASP8 orthologs, and our study suggests that the role of caspase-8 in the apoptotic signal pathway has been conserved over at least 450 million years of vertebrate evolution.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.