Abstract-A method for timing driven placement is presented. The core of the approach is optimal timing-driven relaxed placement based on a linear programming (LP) formulation. The formulation captures all topological paths in a linear sized LP and thus, heuristic net weights or net budgets are not necessary. Additionally, explicit enumeration of a large number of paths is avoided. The flow begins with a given placement and iteratively extracts timing-critical sub-circuits, optimally places the sub-circuit by LP and applies a timing-driven legalizer. The approach is applied to the FPGA domain and yields an average of 19.6% reduction in clock period of routed MCNC designs versus [6] (with reductions up to 39.5%).
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.