This paper deals with finding the optimum parameters of a damped dynamic vibration absorber (DVA) to control chatter in metal cutting systems. The performance of conventional damped DVA is compared with the proposed skyhook damper in which the damper of the absorber system is connected between the absorber mass and an inertial reference in the sky, referred to as a skyhook damper. The damped DVA is optimized by reducing the magnitude in the positive side and increasing it in the negative side of the real part of the frequency response function of the main system. The optimum frequency ratio and the damping ratio of the damped DVA for the undamped and damped main system are obtained using analytical solutions and a numerical optimisation technique, viz genetic algorithm, respectively. The performance of the proposed skyhook damper is marginally better than the conventional type of damped DVA in controlling the vibration of the main system. This is verified by analyzing both the proposed and conventional models using finite element method-based commercial software ANSYS.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.