Laser tissue soldering based on protein as biological glues and other compounds can provide greater bond strength and less collateral damage. Endogenous and exogenous materials such as indocyanine green (ICG) are often added to solders to enhance light absorption. The purpose of this in vitro study was to examine the impact of different parameters of laser soldering on the thermo-physical properties of the skin. A mixture of albumin solder and ICG was prepared, and then the coated samples were irradiated by an 810 nm diode laser under different conditions. The temperature rise, number of scans (N(s)), and scan velocity (V(s)) were investigated in this study. The results showed that, at each laser irradiance (I), the tensile strength (sigma) of incisions repaired in static mode was higher than in dynamic mode and that the sigma increased with both increasing N(s) and increasing I. It is therefore important to consider the trade off between scan velocity and surface temperature for achieving an optimum operating condition.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.