In this work, we study the Dirac equation and Dirac harmonic oscillator in one-dimensional via the Dunkl algebra. By using Dunkl derivative, we solve the momentum operator and Hamiltonian that include the reflection symmetry. Based on the concept of the Wigner–Dunkl algebra and the functional analysis method, we have obtained the energy eigenvalue equation and the corresponding wave function for Dirac harmonic oscillator and Dirac equation, respectively. It is shown all results in the limit state satisfied what we had expected before.
In this paper, we discussed the Schrödinger equation in the presence of the harmonic two electrons interaction for the parabolic quantum dot and the energy spectrum by an analytical method is obtained, then the effective Boltzmann factor in a deformed formalism for modified Dirac delta and uniform distributions are derived. We make use of the superstatistics for the two distributions in physics and the thermodynamic properties of the system are calculated. Ordinary results are recovered for the vanishing deformed parameter. Furthermore, the effect of all parameters in the problems are calculated and shown graphically.
The Klein–Gordon equation is extended in the presence of an Aharonov–Bohm magnetic field for the Cornell potential and the corresponding wave functions as well as the spectra are obtained. After introducing the superstatistics in the statistical mechanics, we first derived the effective Boltzmann factor in the deformed formalism with modified Dirac delta distribution. We then use the concepts of the superstatistics to calculate the thermodynamics properties of the system. The well-known results are recovered by the vanishing of deformation parameter and some graphs are plotted for the clarity of our results.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.