We present a study of the [C ii] 157.74 lm fine-structure line in a sample of 15 ultraluminous infrared (IR) galaxies (IR luminosity L IR k10 12 L ; ULIRGs) using the Long Wavelength Spectrometer (LWS) on the Infrared Space Observatory (ISO). We confirm the observed order of magnitude deficit (compared to normal and starburst galaxies) in the strength of the [C ii] line relative to the far-infrared (FIR) dust continuum emission found in our initial report, but here with a sample that is twice as large. This result suggests that the deficit is a general phenomenon affecting 4 out of 5 ULIRGs. We present an analysis using observations of generally acknowledged photodissociation region (PDR) tracers ([C ii], [O i] 63 and 145 lm, and FIR continuum emission), which suggests that a high ultraviolet flux G 0 incident on a moderate density n PDR could explain the deficit. However, comparisons with other ULIRG observations, including CO (1-0), [C i] (1-0), and 6.2 lm polycyclic aromatic hydrocarbon (PAH) emission, suggest that high G 0 =n PDRs alone cannot produce a self-consistent solution that is compatible with all of the observations. We propose that non-PDR contributions to the FIR continuum can explain the apparent [C ii] deficiency. Here, unusually high G 0 and/ or n physical conditions in ULIRGs as compared to those in normal and starburst galaxies are not required to explain the [C ii] deficit. Dust-bounded photoionization regions, which generate much of the FIR emission but do not contribute significant [C ii] emission, offer one possible physical origin for this additional non-PDR component. Such environments may also contribute to the observed suppression of FIR fine-structure emission from ionized gas and PAHs, as well as the warmer FIR colors found in ULIRGs. The implications for observations at higher redshifts are also revisited.
Interactions between galaxies are predicted to cause gas inflows that can potentially trigger nuclear activity. Since the inflowing material can obscure the central regions of interacting galaxies, a potential limitation of previous optical studies is that obscured Active Galactic Nuclei (AGNs) can be missed at various stages along the merger sequence. We present the first large mid-infrared study of AGNs in mergers and galaxy pairs, in order to quantify the incidence of obscured AGNs triggered by interactions. The sample consists of galaxy pairs and post-mergers drawn from the Sloan Digital Sky Survey that are matched to detections by the Wide Field Infrared Sky Explorer (WISE). We find that the fraction of AGN in the pairs, relative to a mass-, redshift-and environment-matched control sample, increases as a function of decreasing projected separation. This enhancement is most dramatic in the postmerger sample, where we find a factor of 10-20 excess in the AGN fraction compared with the control. Although this trend is in qualitative agreement with results based on optical AGN selection, the mid-infrared selected AGN excess increases much more dramatically in the post-mergers than is seen for optical AGN. Our results suggest that energetically dominant optically obscured AGNs become more prevalent in the most advanced mergers, consistent with theoretical predictions.
The Great Observatories All-sky LIRG Survey (GOALS) combines data from NASA's Spitzer, Chandra, Hubble and GALEX observatories, together with ground-based data into a comprehensive imaging and spectroscopic survey of over 200 low redshift Luminous Infrared Galaxies (LIRGs). The LIRGs are a complete subset of the IRAS Revised Bright Galaxy Sample (RBGS). The LIRGs targeted in GOALS span the full range of nuclear spectral types defined via traditional optical line-ratio diagrams as well as interaction stages. They provide an unbiased picture of the processes responsible for enhanced infrared emission in galaxies in the local Universe. As an example of the analytic power of the multi-wavelength GOALS dataset, we present data for the interacting system VV 340 (IRAS F14547+2449). Between 80-95% of the total far-infrared emission (or about 5E11 solar luminosities) originates in VV 340 North. While the IRAC colors of VV 340 North and South are consistent with star-forming galaxies, both the Spitzer IRS and Chandra ACIS data indicate the presence of a buried AGN in VV 340 North. The GALEX far and near-UV fluxes imply a extremely large infrared "excess" (IRX) for the system (IR/FUV = 81) which is well above the correlation seen in starburst galaxies. Most of this excess is driven by VV 340 N, which alone has an IR excess of nearly 400. The VV 340 system seems to be comprised of two very different galaxies - an infrared luminous edge-on galaxy (VV 340 North) that dominates the long-wavelength emission from the system and which hosts a buried AGN, and a face-on starburst (VV 340 South) that dominates the short-wavelength emission.Comment: 17 pages, 2 tables, 7 postscript figures. Accepted for publication in PASP. Updated manuscript includes complete source table (Table 1
The role of galaxy mergers in fueling active galactic nuclei (AGN) is still debated, owing partly to selection effects inherent to studies of the merger/AGN connection. In particular, luminous AGN are often obscured in late-stage mergers. Mid-infrared (IR) color selection of dust-enshrouded AGN with, e.g., the Wide-field Infrared Survey Explorer (WISE) has uncovered large new populations of obscured AGN. However, this method is sensitive mainly to AGN that dominate emission from the host. To understand how selection biases affect mid-IR studies of the merger/AGN connection, we simulate the evolution of AGN throughout galaxy mergers. Although mid-IR colors closely trace luminous, obscured AGN, we show that nearly half of merger-triggered AGN are missed with common mid-IR selection criteria, even in latestage, gas-rich major mergers. At z < ∼ 0.5, where merger signatures and dual nuclei can most easily be detected, we find that a more lenient W 1 − W 2 > 0.5 cut greatly improves completeness without significantly decreasing reliability. Extreme nuclear starbursts are briefly able to mimic this AGN signature, but this is largely irrelevant in mergers, where such starbursts are accompanied by AGN. We propose a two-color cut that yields high completeness and reliability even in starbursting systems. Further, we show that mid-IR color selection very effectively identifies dual AGN hosts, with the highest fraction at the smallest separations (< 3 kpc). Thus, many merger hosts of mid-IR AGN should contain unresolved dual AGN; these are ideal targets for high-resolution follow-up, particularly with the James Webb Space Telescope.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.