Abstract. Highlights are presented from studies of the electric field data from various regions along the CLUS-TER orbit. They all point towards a very high coherence for phenomena recorded on four spacecraft that are separated by a few hundred kilometers for structures over the whole range of apparent frequencies from 1 mHz to 9 kHz. This presents completely new opportunities to study spatialtemporal plasma phenomena from the magnetosphere out to the solar wind. A new probe environment was constructed for the CLUSTER electric field experiment that now produces data of unprecedented quality. Determination of plasma flow in the solar wind is an example of the capability of the instrument.
[1] We investigated the ambient plasma and magnetic field conditions at high latitudes, as well as the macroparameters of the magnetopause. For this purpose we used Cluster spacecraft plasma and magnetic field data when all the interspacecraft distances were less than 300 km. We analyzed 154 magnetosheath-magnetosphere transitions which allow to distinguish different boundaries between the magnetosphere and the magnetosheath. First, we found transitions similar to the low-latitude boundary layer, the plasma mantle, and cusp-associated transitions. Second, we estimated the length of these transitions. Third, we found with high statistical evidence sub-Alfvénic magnetosheath plasma flows just above the plasma mantle. These flows are supposed to stabilize magnetopause reconnection. Fourth, we carried out an analysis of the magnetopause pressure balance. We found a group of 24 transitions during which both the thermal and the magnetic magnetosheath pressure exceeded the magnetospheric pressure, providing conditions for unusual magnetopause formation. Fifth, for 52 magnetopause crossings we obtained the orientation as well as distributions of velocity, thickness, and current density of the magnetopause. It was found that the magnetopause with an attached plasma mantle moves slower, is thinner, and reaches higher current densities than the one with an adjacent low-latitude-like boundary layer. A comparison with the magnetopause at low latitudes revealed that the high-latitude magnetopause is about two times thicker.
Abstract. We advance the achievements of Interball-1 and other contemporary missions in exploration of the magnetosheath-cusp interface. Extensive discussion of published results is accompanied by presentation of new data from a case study and a comparison of those data within the broader context of three-year magnetopause (MP) crossings by Interball-1. Multi-spacecraft boundary layer studies reveal that in ∼80% of the cases the interaction of the magnetosheath (MSH) flow with the high latitude MP produces a layer containing strong nonlinear turbulence, called the turbulent boundary layer (TBL). The TBL contains wave trains with flows at approximately the Alfvén speed along field lines and "diamagnetic bubbles" with small magnetic fields inside. A comparison of the multi-point measurements obtained on 29 May 1996 with a global MHD model indicates that three types of populating processes should be operative:-large-scale (∼few R E ) anti-parallel merging at sites remote from the cusp; -medium-scale (few thousand km) local TBL-merging of fields that are anti-parallel on average;Correspondence to: S. Savin (ssavin@iki.rssi.ru) -small-scale (few hundred km) bursty reconnection of fluctuating magnetic fields, representing a continuous mechanism for MSH plasma inflow into the magnetosphere, which could dominate in quasi-steady cases.The lowest frequency (∼1-2 mHz) TBL fluctuations are traced throughout the magnetosheath from the post-bow shock region up to the inner magnetopause border. The resonance of these fluctuations with dayside flux tubes might provide an effective correlative link for the entire dayside region of the solar wind interaction with the magnetopause and cusp ionosphere. The TBL disturbances are characterized by kinked, double-sloped wave power spectra and, most probably, three-wave cascading. Both elliptical polarization and nearly Alfvénic phase velocities with characteristic dispersion indicate the kinetic Alfvénic nature of the TBL waves. The three-wave phase coupling could effectively support the self-organization of the TBL plasma by means of coherent resonant-like structures. The estimated characteristic scale of the "resonator" is of the order of the TBL dimension over the cusps. Inverse cascades of kinetic Alfvén waves are proposed for forming the larger scale "organizing" structures, which in turn synchronize all nonlinear cascades within the TBL in a self-consistent manner. This infers a qualitative differ-184 S. Savin et al.: Magnetosheath-cusp interface ence from the traditional approach, wherein the MSH/cusp interaction is regarded as a linear superposition of magnetospheric responses on the solar wind or MSH disturbances.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.