The phase separation in binary mixtures of charged particles has been investigated in a dusty plasma under microgravity on parabolic flights. A method based on the use of fluorescent dust particles was developed that allows us to distinguish between particles of slightly different size. A clear trend towards phase separation even for smallest size (charge) disparities is observed. The diffusion flux is directly measured from the experiment and uphill diffusion coefficients have been determined.
Experiments on self-excited dust-density waves under various magnetic fields have been performed. For that purpose, different dust clouds of micrometer-sized dust particles were trapped in the sheath of a radio frequency discharge. The self-excited dust-density waves were studied for magnetic field strengths ranging from 0 mT to about 2 T. It was observed that the waves are very coherent at the lowest fields (B < 20 mT). At medium fields (20 mT < B<300 mT), the waves seem to feature a complex competition between different wave modes before, at even higher fields, the waves become more coherent again. At the highest fields (above 1 T), the wave activity is diminished. The corresponding wave frequencies and wavenumbers have been derived. From the comparison of the measured wave properties and a model dispersion relation, the ion density and the dust charge are extracted. Both quantities show only little variation with magnetic field strength.
An experimental setup to deagglomerate and insert nanoparticles into a radio frequency (rf) discharge has been developed to confine defined aluminum oxide nanoparticles in a dusty plasma. For the confined particle clouds we have measured the spatially resolved in situ size and density distributions. Implementing the whole plasma chamber into the sample volume of an FTIR spectrometer the infrared spectrum of the confined aluminum oxide nanoparticles has been obtained. We have investigated the dependency of the absorbance of the nanoparticles in terms of plasma power, pressure and cloud shape. The particles' infrared phonon resonance has been identified.
Experiments on dust clusters trapped in the sheath of a radio frequency discharge have been performed for different magnetic field strengths ranging from a few milliteslas to 5.8 T. The dynamics of the dust clusters are analyzed in terms of their normal modes. From that, various dust properties such as the kinetic temperature, the dust charge, and the screening length are derived. It is found that the kinetic temperature of the cluster rises with the magnetic field, whereas the dust charge nearly remains constant. The screening length increases slightly at intermediate magnetic field strengths. Generally, the dust properties seem to correlate with magnetization parameters of the plasma electrons and ions, however only to a small degree.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.