In addition to the major population of infiltrating leukocytes recovered from inflamed rat central nervous system (CNS), all of which expressed high levels of leukocyte common antigen CD45, many cells were coisolated that were MRC OX42+ (complement receptor 3/CD1lb) but expressed low-to-moderate levels of CD45 and major histocompatibility complex (MHC) class I molecules. Most cells from normal CNS, in contrast, lay within this latter, CD45'1 population.From previous in sit immunohistochemical studies, the fortuitously isolated CD45"w cells were probably resident (ramified) microglia. Using irradiation chimeras, we show that resident microglia respond to inflammation by upregulating CD45, CD4, and MHC class I molecules with a minority of these cells increasing their expression of MHC class H molecules. A 3-to 4-fold increase in the number ofmicroglia isolated from inflamed CNS provided indirect evidence that the cells had proliferated. In normal CNS, a very small population of blood-derived CD451fth-expressing cells are present; most MHC class II expression is associated with these few cells and not with the resident microglia.
A central step in the pathogenesis of bacterial meningitis caused by Neisseria meningitidis (the meningococcus) is the interaction of the bacteria with cells of the blood-brain barrier. In the present study, we analysed the invasive potential of two strains representing hypervirulent meningococcal lineages of the ET-5 and ET-37 complex in human brain-derived endothelial cells (HBEMCs). In contrast to previous observations made with epithelial cells and human umbilical vein-derived endothelial cells (HUVECs), significant internalization of encapsulated meningococci by HBMECs was observed. However, this uptake was found only for the ET-5 complex isolate MC 58, and not for an ET-37 complex strain. Furthermore, the uptake of meningococci by HBMECs depended on the presence of human serum, whereas serum of bovine origin did not promote the internalization of meningococci in HBMECs. By mutagenesis experiments, we demonstrate that internalization depended on the expression of the opc gene, which is present in meningococci of the ET-5 complex, but absent in ET-37 complex meningococci. Chromatographic separation of human serum proteins revealed fibronectin as the uptake-promoting serum factor, which binds to HBMECs via alpha 5 beta 1 integrin receptors. These data provide evidence for unique molecular mechanisms of the interaction of meningococci with endothelial cells of the blood-brain barrier and contribute to our understanding of the pathogenesis of meningitis caused by meningococci of different clonal lineages.
A flow cytometric phenotype for isolated adult central nervous system (CNS) ramified microglia was previously defined (CD45low CD11b/c+) in the Lewis strain rat, that clearly distinguished these cells from all blood-derived leucocytes, the latter being CD45high. Consistent with the reported lack of major histocompatibility complex (MHC) expression in the CNS, isolated microglia were mostly MHC class II-. Employing these phenotypic criteria, we now show that a proportion of microglia in Brown Norway (BN) strain rats are constitutively MHC class II+. In spinal cord, up to 25% of microglia are distinctly positive and most have some level of expression. In situ staining of MHC class II+ microglial cells in BN rats indicates that positive cells are typical of ramified microglia on the grounds of both morphological appearance and anatomical location. In Lewis (LEW) rats, the few MHC class II- expressing cells isolated from the normal CNS are CD45high blood- derived cells and not resident microglia. After infection of both LEW and BN rats with a neurotropic murine hepatitis virus (MHV-JHM), MHC class II was rapidly upregulated on microglia in the BN but not in the LEW strain. In the latter, inflammatory cells were the predominant MHC class II-expressing population. Nevertheless, most microglia in the LEW strain could, after some delay, be induced to express MHC class II after transfer of an experimental autoimmune encephalomyelitis (EAE)- inducing encephalitogenic T cell line. Paradoxically, strains resistant to EAE (exemplified by the BN) contained more constitutive MHC class II- expressing microglia than susceptible ones, when a variety of strains were examined. The results clearly establish that the normal CNS may contain MHC class II-expressing cells that are a resident rather than a transient blood-derived population. It is significant that this expression is strain related, but there is no evidence that microglial cell constitutive MHC class II expression predisposes to EAE susceptibility.
SummaryThe potential of cells within the central nervous system (CNS) to initiate T lymphocyte responses is not known and was the subject of this study. Using the ability of virgin T lymphocytes to proliferate in a primary response to allogeneic determinants on antigen-presenting cells (APC), we have examined the capacity of major histocompatibility complex (MHC)-expressing astroglial cells to act as stimulators of primary and secondary T cell responses . Neither freshly isolated astrocytes nor primary astrocyte cultures pretreated with interferon y (IFN-y) to upregulate MHC class I and II expression stimulated unfractionated lymph node (LN) cell populations in the primary mixed lymphocyte reaction . In mixing experiments, astrocyyes did not inhibit the T cell response to allogeneic LN stimulators . Purified responder CD4+ T cells also were not stimulated to proliferate or secrete interleukin 2 (Ilr2) by MHC class I-and II-expressing astrocyyes. In contrast to their inability to stimulate virgin, alloreactive CD4+ T cells, astrocyyes were able to specifically stimulate an alloreactive CD4+ T cell line. Unprimed CD8+ T cells, however, exhibited some weak autonomous proliferation to astrocyte stimulators but this response was only substantial in the presence of exogenous IIr2, the latter predominantly being a CD4+ T cell product . Those CD8+ T cells responding in the presence of IIr2 were mainly T cell receptor a/a+ IIr2 receptor (cx chain)', and a majority had shifted from high to low CD45R expression. Given the virtual dependence of CD8+ T cells in these studies, on CD4+ T cell help, and the complete absence of activation of this latter subset by astrocyyes, it is clear that in the context of this resident CNS cell, further activation of either T cell subset by astrocytes within the CNS can only follow priming by another type of APC . The implications of these results for the induction of T cell responses in the CNS are discussed .
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.