Abstract. Monitoring ground deformation at national and regional level with millimetre-scale precision, nowadays, is possible by using Advanced Differential Interferometric SAR (A-DInSAR) techniques. This study concerns the results of the European Ground Motion Service (EGMS), part of the Copernicus Land Monitoring Service, which detects and measures land displacement at European scale. This Service provides reliable and consistent information regarding natural ground motion phenomena such as landslides and subsidence. The ground motion is derived from Synthetic Aperture Radar (SAR) time-series analysis of Sentinel-1A/B data. These data, which provide full coverage of Europe from two different observation geometries (ascending and descending) every six days, are processed at full resolution. The paper is focused on the exploitation of the basic product of EGMS for both regional and local purposes. Analysing the slope and aspect of the deformation field is the novelty of this investigation. In particular, the focus is put on the generation of wide-area differential deformation maps. Such maps indicate the gradient of the deformation field. The obtained information is not only beneficial for monitoring anthropogenic phenomena but also vital for urban management and planning. Most of the significant damages to manmade structures and infrastructures are associated with high deformation gradient values. Thus, monitoring the temporal and spatial variations of deformation gradient is essential for dynamic analysis, early-warning, and risk assessment in urban areas. Although EGMS productions are prepared for monitoring at regional level, their resolutions are high enough to investigate at local level. Therefore, this paper considers the local deformations that affect single structures or infrastructures. Local differences in such deformation can indicate damages in the corresponding structures and infrastructures. We illustrate these types of analysis to generate differential deformation maps using datasets available at CTTC.
Abstract. Radar interferometry has progressed very much in the last two decades. It is now a powerful remote sensing techniques to monitor ground motion. The technique has undergone an important development in terms of processing and data analysis algorithms. This has been accompanied by an important increase of the Synthetic Aperture Radar (SAR) data acquisition capability by spaceborne sensors. A step forward was the launch of the Copernicus Sentinel-1 constellation. This has made the development of A-DInSAR (Advanced Differential Interferometric SAR) ground deformation services technically feasible. The paper is focused on the most important ground motion initiative ever conceived: the European Ground Motion Service (EGMS). This service is part of the Copernicus Land Monitoring Service managed by the European Environment Agency. EGMS involves the ground deformation monitoring at European scale. The service will deliver the first product in May 2022. In this paper we describe some preliminary examples of deformation products coming from the EGMS.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.