The motivation to replace steel and cast iron with Al–Si alloys for automotive components is part of the attempt to improve fuel economy and reduce emissions. In relation to that, the application of high-speed drilling is considered one of the most-used operations in hole making for automotive parts due to its ability to reduce lead time without sacrificing the hole quality. However, this advantage was offset by the creeping problems encountered during high-speed drilling. Although this issue is addressed accordingly, problems like uncontrollable surface integrity and poor hole quality still exist. Surface integrity studies involved the investigation of surface roughness, metallurgical changes and microhardness of the subsurface of the drilled hole. Significant alternations with respect to the loss of mechanical properties have been observed from the microhardness and microstructure analysis of the drilled hole. Results from this study showed that, in general, drilling parameters have significant effects on the surface quality and integrity of the drilled hole during high-speed drilling of Al–Si using an HSS drill.
Abstract. Compacted Graphite Iron, (CGI) is known to have outstanding mechanical strength and weightto-strength ratio as compared to conventional grey cast iron, (CI). The outstanding characteristics of CGI is due to its graphite particle shape, which is presented as compacted vermicular particle. The graphite is interconnected with random orientation and round edges, which results in higher mechanical strength. Whereas, graphite in the CI consists of a smooth-surfaced flakes that easily propagates cracks which results in weaker and brittle properties as compared to CGI. Owing to its improved properties, CGI is considered as the best candidate material in substituting grey cast iron that has been used in engine block applications for years. However, the smooth implementation of replacing CI with CGI has been hindered due to the poor machinability of CGI especially at high cutting speed. The tool life is decreased by 20 times when comparing CGI with CI under the same cutting condition. This study investigates the effect of using cryogenic cooling and minimum quantity lubrication (MQL) during high-speed milling of CGI (grade 450). Results showed that, the combination of internal cryogenic cooling and enhanced MQL improved the tool life, cutting force and surface quality as compared to the conventional flood coolant strategy during highspeed milling of CGI.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.