We evaluate the nanosecond temporal evolution of tens of thousands of positive discharges in a 16 cm point-plane gap in high purity nitrogen 6.0 and in N 2-O 2 gas mixtures with oxygen contents of 100 ppm, 0.2%, 2% and 20%, for pressures between 66.7 and 200 mbar. The voltage pulses have amplitudes of 20 to 40 kV with rise times of 20 or 60 ns and repetition frequencies of 0.1 to 10 Hz. The discharges first rapidly form a growing cloud around the tip, then they expand much more slowly like a shell and finally after a stagnation stage they can break up into rapid streamers. The radius of cloud and shell in artificial air is about 10% below the theoretically predicted value and scales with pressure p as theoretically expected, while the observed scaling of time scales with p raises questions. We find characteristic dependences on the oxygen content. No cloud and shell stage can be seen in nitrogen 6.0, and streamers emerge immediately. The radius of cloud and shell increases with oxygen concentration. On the other hand, the stagnation time after the shell phase is maximal for the intermediate oxygen concentration of 0.1% and the number of streamers formed is minimal; here the cloud and shell phase seem to be particularly stable against destabilization into streamers.
Ionic wind is produced by a corona discharge when gaseous ions are accelerated in the electric field and transfer their momentum to neutral molecules by collisions. This technique is promising because a gas flow can be generated without the need for moving parts and can be easily miniaturized. The basic theory of ionic wind sounds simple but the details are far from clear. In our experiment, a negative DC voltage is applied to a needle-cylinder electrode geometry. Hot wire anemometry is used to measure the flow velocity at the downstream exit of the cylinder. The flow velocity fluctuates but the average velocity increases with the voltage. The current consists of a regular train of pulses with short rise time, the well-known Trichel pulses. To reveal the ionic wind mechanism in the Trichel pulse stage, a three-species corona model coupled with gas dynamics is built. The drift-diffusion equations of the plasma together with the Navier-Stokes equations of the flow are solved in COMSOL Multiphysics. The electric field, net number density of charged species, electrohydrodynamic (EHD) body force and flow velocity are calculated in detail by a selfconsistent model. Multiple time scales are employed: hundreds of microseconds for the plasma characteristics and longer time scales (∼1 s) for the flow behavior. We found that the flow velocity as well as the EHD body force have opposite directions in the ionization region close to the tip and the ion drift region further away from the tip. The calculated mean current, Trichel pulse frequency and flow velocity are very close to our experimental results. Furthermore, in our simulations we were able to reproduce the mushroom-like minijets observed in experiments.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.