Extensive crosstalk among ErbB/HER receptors suggests that blocking signaling from more than one family member may be essential to effectively treat cancer and limit drug resistance. We generated a conventional IgG molecule MEHD7945A with dual HER3/EGFR specificity by phage display engineering and used structural and mutational studies to understand how a single antigen recognition surface binds two epitopes with high affinity. As a human IgG1, MEHD7945A exhibited dual action by inhibiting EGFR- and HER3-mediated signaling in vitro and in vivo and the ability to engage immune effector functions. Compared with monospecific anti-HER antibodies, MEHD7945A was more broadly efficacious in multiple tumor models, showing that combined inhibition of EGFR and HER3 with a single antibody is beneficial.
Background: Therapeutic inhibition of circulating PCSK9 reduces LDL-c levels. Results: A synthetic PCSK9-binding peptide, which restores cellular LDL receptors, was identified. Conclusion: Pep2-8 is the smallest PCSK9 inhibitor with a defined inhibitory mechanism described to date and structurally mimics the EGF(A) domain of the receptor. Significance: This work demonstrates the feasibility of developing a peptide-based inhibitor of PCSK9.
The aspartic acid residues (Asp) present in the complementarity-determining regions (CDRs) of the light chains of two recombinant monoclonal antibodies (MAbs), MAb I and MAb II, are highly susceptible to isomerization due to the presence of glycine residues (Gly) on their C-terminal ends. Asp isomerization in these MAbs leads to formation of the isoaspartate (IsoAsp) and the cyclic imide (Asu) variants of these MAbs. Both MAb I and MAb II, employed in this study, elicit their pharmacological responses through binding human IgE. The formation of the MAb variants as a result of Asp isomerization significantly reduces the binding affinities of these antibodies to IgE, thereby reducing their potencies. Here we report on significant differences in the susceptibility of the MAb I and the MAb II to Asp isomerization. The molecular basis for these differences in rates of Asp isomerization was elucidated. The effect of primary sequence on Asp isomerization was evaluated using pentapeptide models of the MAbs, which included the labile Asp residues and their neighboring amino acid residues. The separation of the parent MAbs and pentapeptides from their isomerization products was achieved using hydrophobic interaction chromatography (HIC) and rp-HPLC, respectively. Structural characterization of the MAbs was performed using differential scanning calorimetry (DSC), circular dichroism (CD), and X-ray crystallography. Our investigations demonstrate that the differences in the Asp isomerization rates between MAb I and MAb II can be attributed to structural factors including the conformational flexibility and the extent of solvent exposure of the labile Asp residue.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.