Internet of Medical Things (IoMT) is the collection of medical devices and related applications which link the healthcare IT systems through online computer networks. In the field of diagnosis, medical image classification plays an important role in prediction and early diagnosis of critical diseases. Medical images form an indispensable part of a patient's health record which can be applied to control, handle and treat the diseases. But, classification of images is a challenging task in computer-based diagnostics. In this research article, we have introduced a improved classifier i.e., Optimal Deep Learning (DL) for classification of lung cancer, brain image, and Alzheimer's disease. The researchers proposed the Optimal Feature Selection based Medical Image Classification using DL model by incorporating preprocessing, feature selection and classification. The main goal of the paper is to derive an optimal feature selection model for effective medical image classification. To enhance the performance of the DL classifier, Oppositionbased Crow Search (OCS) algorithm is proposed. The OCS algorithm picks the optimal features from pre-processed images, here Multi-texture, grey level features were selected for the analysis. Finally, the optimal features improved the classification result and increased the accuracy, specificity and sensitivity in the diagnosis of medical images. The proposed results were implemented in MATLAB and compared with existing feature selection models and other classification approaches. The proposed model achieved the maximum performance in terms of accuracy, sensitivity and specificity being 95.22%, 86.45 % and 100% for the applied set of images.
Magnetic resonance imaging is a standard modality used in medicine for bone diagnosis and treatment. It offers the advantage to be a non-invasive technique that enables the analysis of bone tissues. The early detection of tumor in the bone leads on saving the patients' life through proper care. The accurate detection of tumor in the MRI scans are very easy to perform. Furthermore, the tumor detection in an image is useful not only for medical experts, but also for other purposes like segmentation and 3D reconstruction. The manual delineation and visual inspection will be limited to avoid time consumption by medical doctors. The bone tumor tissue detection allows localizing a mass of abnormal cells in a slice of magnetic resonance (MR).
Magnetic resonance imaging is a standard modality used in medicine for bone diagnosis and treatment. It offers the advantage to be a non-invasive technique that enables the analysis of bone tissues. The early detection of tumor in the bone leads on saving the patients' life through proper care. The accurate detection of tumor in the MRI scans are very easy to perform. Furthermore, the tumor detection in an image is useful not only for medical experts, but also for other purposes like segmentation and 3D reconstruction. The manual delineation and visual inspection will be limited to avoid time consumption by medical doctors. The bone tumor tissue detection allows localizing a mass of abnormal cells in a slice of magnetic resonance (MR).
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.