Atomic Force Microscopes (AFMs) have been widely used as nanomanipulators due to their versatility to work with a broad range of materials and their controllable interaction force, among other features. While AFMs can effectively grasp, move, and position nanoscale objects in 2D environments through basic pull/push operations, they often lack the high precision required in many 3D pick and place applications, especially in non-vacuum environments. In this study, a novel method to resolve the adhesion problem between nanoscale objects and the AFM tip has been developed and tested. The method is based on the application of a high electrostatic voltage to the tip to produce the repulsive force required for the release of the nanoobject. The method is proposed for conductive nanoparticles and tips used in many nanomanipulation applications, and can be easily implemented on typical AFMs with minimal alterations. The applicability of the proposed method is investigated through a series of combined Molecular Dynamics/Finite Element simulations.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.