Due to the Covid-19 pandemic which started in the year 2020, many nations had imposed lockdown to curb the spread of this virus. People have been sharing their experiences and perspectives on social media on the lockdown situation. This has given rise to increased number of tweets or posts on social media. Multi-class text classification, a method of classifying a text into one of the pre-defined categories, is one of the effective ways to analyze such data that is implemented in this paper. A Covid-19 dataset is used in this work consisting of fifteen predefined categories. This paper presents a multi-layered hybrid model, LSTM followed by GRU, to integrate the benefits of both the techniques. The advantages of word embeddings techniques like GloVe and BERT have been implemented and found that, for three epochs, the transfer learning based pre-trained BERThybrid model performs one percent better than GloVe-hybrid model but the state-of-the-art, fine-tuned BERT-base model outperforms the BERT-hybrid model by three percent, in terms of validation loss. It is expected that, over a larger number of epochs, the hybrid model might outperform the fine-tuned model.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.