Rhesus monkey embryonic stem cells (ESCs) (R366.4), cultured on a three-dimensional (3D) collagen matrix with or without human neonatal foreskin fibroblasts (HPI.1) as feeder cells, or embedded in the collagen matrix, formed complex tubular or spherical gland-like structures and differentiated into phenotypes characteristic of neural, epithelial and endothelial lineages. Here, we analysed the production of endogenous extracellular matrix (ECM) proteins, cell-cell adhesion molecules, cell-surface receptors, lectins and their glycoligands, by differentiating ESCs, forming a micro-environment, a niche, able to positively influence cell behaviour. The expression of some of these molecules was modulated by HPI.1 cells while others were unaffected. We hypothesized that both soluble factors and the niche itself were critical in directing growth and/or differentiation of ESCs in this 3D environment. Creating such an appropriate experimental 3D micro-environment, further modified by ESCs and modulated by exogenous soluble factors, may constitute a template for adequate culture systems in developmental biology studies concerning differentiation of stem cells.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.