We present the first results from the Quasar Feedback Survey, a sample of 42 z < 0.2, [O iii] luminous AGN (L[O III] > 1042.1 ergs s−1) with moderate radio luminosities (i.e. L1.4GHz > 1023.4 W Hz−1; median L1.4GHz = 5.9 × 1023 W Hz−1). Using high spatial resolution (∼0.3–1 arcsec), 1.5–6 GHz radio images from the Very Large Array, we find that 67 percent of the sample have spatially extended radio features, on ∼1–60 kpc scales. The radio sizes and morphologies suggest that these may be lower radio luminosity versions of compact, radio-loud AGN. By combining the radio-to-infrared excess parameter, spectral index, radio morphology and brightness temperature, we find radio emission in at least 57 percent of the sample that is associated with AGN-related processes (e.g. jets, quasar-driven winds or coronal emission). This is despite only 9.5–21 percent being classified as radio-loud using traditional criteria. The origin of the radio emission in the remainder of the sample is unclear. We find that both the established anti-correlation between radio size and the width of the [O iii] line, and the known trend for the most [O iii] luminous AGN to be associated with spatially-extended radio emission, also hold for our sample of moderate radio luminosity quasars. These observations add to the growing evidence of a connection between the radio emission and ionised gas in quasar host galaxies. This work lays the foundation for deeper investigations into the drivers and impact of feedback in this unique sample.
We present a study of a luminous, z = 0.15, type-2 quasar ($L_{[\rm O III]}$=1042.8 erg s−1) from the Quasar Feedback Survey. It is classified as ‘radio-quiet’ ( L1.4 GHz=1023.8 W Hz−1); however, radio imaging reveals ∼ 1 kpc low-power jets (Pjet= 1044 erg s−1) inclined into the plane of the galaxy disk. We combine MUSE and ALMA observations to map stellar kinematics and ionised and molecular gas properties. The jets are seen to drive galaxy-wide bi-conical turbulent outflows, reaching W80 = 1000 - 1300 km s−1, in the ionised phase (traced via optical emission-lines), which also have increased electron densities compared to the quiescent gas. The turbulent gas is driven perpendicular to the jet axis and is escaping along the galaxy minor axis, reaching 7.5 kpc on both sides. Traced via CO(3–2) emission, the turbulent material in molecular gas phase is one-third as spatially extended and has 3 times lower velocity-dispersion as compared to ionised gas. The jets are seen to be strongly interacting with the interstellar medium (ISM) through enhanced ionised emission and disturbed/depleted molecular gas at the jet termini. We see further evidence for jet-induced feedback through significantly higher stellar velocity-dispersion aligned, and co-spatial with, the jet axis (< 5 ○). We discuss possible negative and positive feedback scenarios arising due to the interaction of the low-power jets with the ISM in the context of recent jet-ISM interaction simulations, which qualitatively agree with our observations. We discuss how jet-induced feedback could be an important feedback mechanism even in bolometrically luminous ‘radio-quiet’ quasars.
We present results from a polarization study of the radio-intermediate quasar, III Zw 2, at a redshift of 0.089, with the upgraded Giant Metrewave Radio Telescope (uGMRT) at 685 MHz and the Karl G. Jansky Very Large Array (VLA) at 5 and 34 GHz. We detect a kpc-scale outflow, exhibiting transverse magnetic (B-) fields. The curved jet terminates in a bow-shock-like radio structure with inferred B-fields aligned with the lobe edges. We suggest that the radio outflow in III Zw 2 is a combination of a collimated jet along with a wind-like component. This ‘wind’ component could be a magnetized accretion disc wind or the outer layers of a broadened jet or a combination of both. The current data cannot differentiate between these possibilities. We also detect kpc-scale lobe emission that is misaligned with the primary lobes in the uGMRT images. The spectral indices and the electron lifetimes in the misaligned lobe are similar to the primary lobe, suggesting that the misaligned lobe is not a relic. We propose that changing spectral states of the accretion disc, and the subsequent intermittent behaviour of the outflow, along with the close interplay between the jet and ‘wind’ could explain the radio-intermediate nature of III Zw 2. Our study shows that radio-intermediate quasars are promising sources for understanding the role of jets and winds in galaxy evolution and demonstrates the power of radio polarization studies towards achieving this.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.