We assess the degree to which adaptation to a uniform environment among independently evolving asexual populations is associated with increasing divergence of those populations. In addition, we are concerned with the pattern of adaptation itself, particularly whether the rate of increase in mean fitness tends to decline with the number of generations of selection in a constant environment. The correspondence between the rate of increase in mean fitness and the within-population genetic variance of fitness, as expected from Fisher's fundamental theorem, is also addressed. Twelve Escherichlia coli populations were founded from a single clonal ancestor and allowed to evolve for 2,000 generations. Mean fitness increased by about 37%. However, the rate of increase in mean fitness was slower in later generations. There was no statistically significant within-population genetic variance of fitness, but there was significant between-population variance. Although the estimated genetic variation in fitness within populations was not statistically significant, it was consistent in magnitude with theoretical expectations. Similarly, the variance of mean fitness between populations was consistent with a model that incorporated stochastic variation in the timing and order of substitutions at a finite number of nonepistatic loci, coupled with substitutional delays and interference between substitutions arising from clonality. These results, taken as a whole, are consistent with theoretical expectations that do not invoke divergence due to multiple fitness peaks in a Wrightian evolutionary landscape.
In the absence of antibiotics, carriage of pACYC184 reduces the competitive fitness of an Escherichia coli B genotype that was not previously selected for plasmid carriage, relative to that of an isogenic plasmid-free competitor. However, a host genotype propagated with the plasmid for 500 generations evolved an unexpected competitive advantage from plasmid carriage, relative to its own isogenic plasmid-free segregant. We manipulated the pACYC184 genome in order to identify the plasmid-encoded function that was required for the enhancement of the coevolved host genotype's competitive fitness.
Contamination of habitats with heavy metals has become a worldwide problem. We describe herein the analysis of lake sediment contaminated with high concentrations of copper as a consequence of mine milling disposal over a 100-year period. Copper concentrations in the sediment were found to vary with depth and ranged from 200 to 5500 ppm. Analysis of the microbial community with T-RFLP identified a minimum of 20 operational taxonomic units (OTU). T-RFLP analysis along a depth profile detected as many as nine shared OTUs across 15 centimeters, suggesting a conservation of community structure over this range. Only two genera, Arthrobacter and Ralstonia, were detected among 50 aerobic copper-resistant isolates cultivated on R2A, one of which (Ralstonia sp.) was characterized by the sequestration of copper, identified by electron diffraction scanning, in growing colonies. Scanning electron microscopy showed changes to the outer envelope of the cells when grown in the presence of copper. The copper-resistant Ralstonia isolates were also resistant to Ni, Cd, and Zn, showing two patterns of phenotypic resistant to these three metals in which either resistance to Zn or Ni was expressed in an isolate but never both.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.