The present analysis is composed of heat transfer characteristics on MHD free convective stagnated flow of micropolar liquid due to stretching of an exponential curved sheet. The flow is supposed to be time-independent and not turbulent. The impact of non-linear radiation, unequal heat source/sink, Joule heating and variable thermal conductivity are supposed. Appropriate alterations are mused to change the original PDEs as ordinary ones and then solved by shooting and fourth order Runge-Kutta-Fehlberg integration schemes. Graphs are outlined to inspect the impacts of sundry non-dimensional variables on the distributions of velocity, micro rotation and temperature. We discern that there is an augmentation in the fields of heat with Eckert number, nonlinear radiation and irregular hear parameters. Also it is motivating to comment that material parameter is a decreasing function of velocity. We establish the consequences in this analysis evidence to be extremely agreeable with the obtainable consequences.
This study examines the problem of unsteady MHD mixed convective flow past a vertical porous plate in presence of radiation. The coupled non linear partial differential equations are solved numerically by a finite element method. The effects of the material parameters on the velocity, temperature and concentration fields are shown graphically.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.