Association Rule Mining (ARM) is a standard data mining practice used to determine interactions hidden in huge sets. Association Rule Hiding (ARH) methods are used to preserve the privacy of data in ARM. ARH process modifies the original database without changing any non-sensitive rules and data. In order to hide the sensitive rules, cuckoo search optimization algorithm that was developed for hiding the sensitive association rules (COA4ARH) was proposed for sensitive rule hiding. In COA4ARH, number of transactions that should be modified to hide the sensitive rules is not considered which may leads to more number of iteration. In this paper, two properties are introduced to select less number of transactions to be modified. It makes the COA4ARH algorithm faster, decreases the number of lost rules and is suitable for variety of datasets. In order to increase the rule hiding capability of COA4ARH, new fitness functions are introduced. The new fitness functions reduce the amount of lost rules and avoid generation of ghost rules which are formed as objectives of COA4ARH algorithm. The multiple objectives in COA4ARH are conflicting with each other. This is known as multi-objective optimization problem. The multi-objective optimization deals with set of non-dominated solutions (Pareto front) for the problem having more than one objective. It is solved by using Crowding Distance (CD) which selects the optimal set of solution for association rule hiding. Thus, the proposed Improved COA4ARH- CD (ICOA4ARH-CD) can be suitable for variety of datasets and effectively hides the sensitive rules with fewer side effects.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.