Software is unavoidable in software development and maintenance. In literature, many methods are discussed which fails to achieve efficient software bug detection and classification. In this paper, efficient Adaptive Deep Learning Model (ADLM) is developed for automatic duplicate bug report detection and classification process. The proposed ADLM is a combination of Conditional Random Fields decoding with Long Short-Term Memory (CRF-LSTM) and Dingo Optimizer (DO). In the CRF, the DO can be consumed to choose the efficient weight value in network. The proposed automatic bug report detection is proceeding with three stages like pre-processing, feature extraction in addition bug detection with classification. Initially, the bug report input dataset is gathered from the online source system. In the pre-processing phase, the unwanted information from the input data are removed by using cleaning text, convert data types and null value replacement. The pre-processed data is sent into the feature extraction phase. In the feature extraction phase, the four types of feature extraction method are utilized such as contextual, categorical, temporal and textual. Finally, the features are sent to the proposed ADLM for automatic duplication bug report detection and classification. The proposed methodology is proceeding with two phases such as training and testing phases. Based on the working process, the bugs are detected and classified from the input data. The projected technique is assessed by analyzing performance metrics such as accuracy, precision, Recall, F_Measure and kappa.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.