We employ the relativistic mean-field plus BCS (RMF+BCS) approach to study the behavior of [Formula: see text]-shell by investigating in detail the single particle energies, and proton and neutron density profiles along with the deformations and radii of even–even nuclei. Emergence of new shell closure, weakly bound structure and most recent phenomenon of bubble structure are reported in the [Formula: see text]-shell. [Formula: see text]C, [Formula: see text]O and [Formula: see text]S are found to have a weakly bound structure due to particle occupancy in 2[Formula: see text] state. On the other hand [Formula: see text]O, [Formula: see text]Ca and [Formula: see text]Si are found with depleted central density due to the unoccupied 2[Formula: see text] state and hence they are the potential candidates of bubble structure. [Formula: see text]C and [Formula: see text]O emerge as doubly magic with [Formula: see text] in accord with the recent experiments and [Formula: see text]S emerges as a new proton magic nucleus with [Formula: see text]. [Formula: see text] and [Formula: see text] are predicted as magic numbers in doubly magic [Formula: see text]O, [Formula: see text]Ca and [Formula: see text]Si, respectively. These results are found in agreement with the recent experiments and have consistent with the other parameters of RMF and other theories.
We investigate a simple statistical model of quark-gluon plasma (QGP) formation. In the model, we use a phenomenological parameter which enhances the growth of quark droplet formation and also stabilizes the formation of the QGP droplet. Then, we study direct photon radiation through annihilation and Compton processes from these stabilized QGP incorporating the parametrized momentum factor in the quark mass. The production rate of thermal photon is found to be dominated in the low transverse momentum and increases a little in comparison to the recent development of direct photon radiation of other theoretical and experimental works.
Collision strengths for the lowest 52 fine-structure levels of Ba XLVIII have been computed using Dirac atomic R-matrix code (DARC). Resonances in the threshold region have been completely resolved and the contributions of these resonances to allowed and forbidden transitions have been presented. Effective collision strengths have also been determined within a temperature range from the ground state. Collision strengths from ground state have also been computed with the relativistic distorted wave method, the flexible atomic code (FAC) was used for checking the accuracy of our results. The present work represents a new and significant work with improvement in the field. We believe that our presented data of collision and effective collision strengths may be useful in the future for benchmark calculations and for plasma diagnostics.
Collision strengths for all 1326 transitions among lowest 52 fine-structure levels of Br XXVII have been computed using Dirac atomic R-matrix code (DARC). Resonances in the threshold region have been completely resolved and the contributions of these resonances to allowed and forbidden transitions have been presented. The partial collision strength for each angular momentum has been studied graphically. Effective collision strengths have also been determined within the temperature range for all 1326 transitions among the lowest 52 levels. Target state energies of the lowest 52 fine-structure levels have been computed from the multi-configuration Dirac–Fock method (MCDF). Additionally, similar calculations with the relativistic distorted wave method and flexible atomic code (FAC) have also been performed to check the accuracy of our results. The present work represents a new and significant work with improvement in the field. We believe that our presented data of collision and effective collision strengths may be useful in the future for benchmark calculations and for plasma diagnostics.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.