Intermediate filaments (IFs) are a key component of the cytoskeleton in virtually all vertebrate cells, including those of the lens of the eye. IFs help integrate individual cells into their respective tissues. This Review focuses on the lens-specific IF proteins beaded filament structural proteins 1 and 2 (BFSP1 and BFSP2) and their role in lens physiology and disease. Evidence generated in studies in both mice and humans suggests a critical role for these proteins and their filamentous polymers in establishing the optical properties of the eye lens and in maintaining its transparency. For instance, mutations in both BFSP1 and BFSP2 cause cataract in humans. We also explore the potential role of BFSP1 and BFSP2 in aging processes in the lens.
Human lens membranes contain the highest cholesterol concentration of any known biological membranes, but it significantly decreases with age. Oxygenation of cholesterol generates numerous forms of oxysterols (bile acids). We previously showed that two forms of the bile acid components-ursodeoxycholic acid (UDCA) and tauroursodeoxycholic acid (TUDCA)-suppressed lens epithelial cell death and alleviated cataract formation in galactosemic rat lenses. We investigated whether these compounds also suppress the thermal aggregation of human lens crystallins. Total water-soluble (WS) proteins were prepared from human lenses, and recombinant human crystallins (αA-, αB-, βB2-, and γC-crystallin) were generated by a prokaryotic expression system and purified by liquid chromatography. The light scattering of proteins in the presence or absence of UDCA or TUDCA was measured using a spectrofluorometer set at Ex/Em=400/ 400 nm. Protein blot analysis was conducted for detection of α-crystallins in the human lens WS proteins. High concentrations of UDCA and TUDCA significantly suppressed thermal aggregation of total lens WS proteins, which contained a low level of αA-/αB-crystallin. Spectroscopic analysis with each recombinant human lens crystallin indicated that the bile acids did not suppress the thermal aggregation of γC-, βB2-, αA-, or αB-crystallin. Combination of α-crystallin and bile acid (either UDCA or TUDCA) suppressed thermal aggregation of each individual crystallin as well as a non-crystallin protein, insulin. These results suggest that UDCA or TUDCA protects the chaperone activity of α-crystallin. It is believed that these two naturally occurring intermediate waste products in the lens enhance the chaperone activity of α-crystallin. This finding may lead to the development of UDCA and TUDCA as anticataract agents.
The human lens crystallin gene CRYGC T5P is associated with Coppock-like cataract and has a phenotype of a dust-like opacity of the fetal lens nucleus and deep cortical region. Previous in vitro mutation studies indicate that the protein has changed conformation, solubility, and stability, which may make it susceptible to aggregation, as seen in cataractous lens and cell culture expression. To investigate the mechanisms leading to these events, we studied protein-protein interactions using confocal fluorescence resonance energy transfer (FRET) microscopy. The method detects proteinprotein interactions in the natural environment of living cells. Crystallin genes (CRYGC T5P, CRYGC, and CRYAA) were fused to either the green fluorescence protein (GFP) or red fluorescence protein (DsRED or RFP) vector. Each of the following GFP-RFP (donor-acceptor) plasmid pairs was cotransfected into HeLa cells: γC-γC, γC-γCT5P, γCT5P-γCT5P, αA-γC, and αAγCT5P. After culture, confocal fluorescence cell images were taken. Protein-protein interactions in the form of net FRET were evaluated. The confocal fluorescence images show that cells expressing T5P γC-crystallin contain many protein aggregates, but cells co-expressing with either γC-or αA-crystallin reduce the aggregation considerably. FRET determination indicates that γCT5P-γCT5P shows less protein-protein interaction than either γC-γC or γC-γCT5P. Cotransfection with αA-crystallin (αA-γC orαA-T5PγC) increases nFRET compared with γC-γC or γC-T5PγC. Our results demonstrate that T5PγC-crystallin shows more protein aggregates and less protein-protein interaction than WTγC-crystallin. Chaperone αA-crystallin can rescue T5P γC-crystallin from aggregation through increased protein interaction. The formation of congenital cataract may be due to reduced protein-protein interactions and increased aggregation from an insufficient amount of α-crystallin for protection.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.