The use of bottom-up approaches to construct patterned surfaces for technological applications is appealing, but to date is applicable to only relatively small areas (approximately 10 square micrometers). We constructed highly periodic patterns at macroscopic length scales, in the range of square millimeters, by combining self-assembly of disk-like porphyrin dyes with physical dewetting phenomena. The patterns consisted of equidistant 5-nanometer-wide lines spaced 0.5 to 1 micrometers apart, forming single porphyrin stacks containing millions of molecules, and were formed spontaneously upon drop-casting a solution of the molecules onto a mica surface. On glass, thicker lines are formed, which can be used to align liquid crystals in large domains of square millimeter size.
Many chemical reactions are catalysed by metal complexes, and insight into their mechanisms is essential for the design of future catalysts. A variety of conventional spectroscopic techniques are available for the study of reaction mechanisms at the ensemble level, and, only recently, fluorescence microscopy techniques have been applied to monitor single chemical reactions carried out on crystal faces and by enzymes. With scanning tunnelling microscopy (STM) it has become possible to obtain, during chemical reactions, spatial information at the atomic level. The majority of these STM studies have been carried out under ultrahigh vacuum, far removed from conditions encountered in laboratory processes. Here we report the single-molecule imaging of oxidation catalysis by monitoring, with STM, individual manganese porphyrin catalysts, in real time, at a liquid-solid interface. It is found that the oxygen atoms from an O2 molecule are bound to adjacent porphyrin catalysts on the surface before their incorporation into an alkene substrate.
We report on tunneling spectroscopy measurements on colloidal CdSe quantum dots of different sizes. The size-dependent energy level structure and electron-hole Coulomb attraction in CdSe quantum dots are obtained by a combination of shell-tunneling spectroscopy and optical spectroscopy. The results are in good agreement with tight-binding calculations. The electron-electron interactions are investigated by shell-filling spectroscopy. The tunneling spectra in this regime are analyzed by solving the master equation for the electron and hole occupancy of the quantum dot.
Molecules, supramolecular structures and semiconductor nanocrystals are increasingly used as the active components in prototype opto-electrical devices with miniaturized dimensions and novel functions. Therefore, there is a strong need to measure the electronic structure of such single, individual nano-objects. Here, we explore the potential of scanning tunnelling spectroscopy to obtain quantitative information on the energy levels and Coulomb interactions of semiconductor quantum dots. We discuss the conditions under which shell-tunnelling, shell-filling and bipolar spectroscopy can be performed, and illustrate this with spectra acquired on individual CdSe and PbSe quantum dots. We conclude that quantitative information on the energy levels and Coulomb interactions can be obtained if the physics of the tip/quantum dot/substrate double-barrier tunnel junction is well understood.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.