In thermoacoustic systems heat is converted into acoustic energy and vice versa. These systems use inert gases as working medium and have no moving parts which makes the thermoacoustic technology a serious alternative to produce mechanical or electrical power, cooling power, and heating in a sustainable and environmentally friendly way. A thermoacoustic Stirling heat engine is designed and built which achieves a record performance of 49% of the Carnot efficiency. The design and performance of the engine is presented. The engine has no moving parts and is made up of few simple components.
Abstract--Models published in the two-phase flow literature for the added mass coefficient of a dilute bubbly dispersion are discussed and compared. It is shown that the differences between the models are mainly due to the different ways in which the added mass is defined. Also, approximate expressions for the added mass coefficient of non-dilute bubbly dispersions are given. Finally, the use of the models in an equation for the average motion of the bubbles is briefly discussed.
A coaxial thermoacoustic-Stirling cooler is built and performance measurements are performed. The cooler uses the acoustic power produced by a linear motor to pump heat through a regenerator from a cold heat exchanger to an ambient one. The cooler incorporates a compact acoustic network to create the traveling-wave phasing necessary for the operation in a Stirling cycle. The network has a coaxial geometry instead of the toroidal one usually used in such systems. The design, construction and performance measurements of the cooler are presented. A measured coefficient of performance relative to Carnot of 25% and a low temperature of À54°C are achieved by the cooler. This efficiency surpasses the performance of the most efficient standing-wave cooler by almost a factor of two.
A two-dimensional computational fluid dynamics (CFD) simulation study of a traveling-wave thermoacoustic engine is presented. The computations show an increase of the dynamic pressure when a linear temperature difference is applied across the regenerator. An amplification of the acoustic power through the engine is also illustrated. A satisfactory agreement between the calculated and expected gains of the traveling-wave thermoacoustic engine is obtained. The expected gain is defined as the ratio of the absolute temperatures at the ends of the regenerator. Nonlinear phenomena that cannot be captured by existing linear theory, like streaming mass flows and vortices formation, are also visualized. It is concluded that CFD codes could be used in the future to predict and optimize thermoacoustic systems. This is an important step towards the development of nonlinear simulation tools for the high-amplitude thermoacoustic systems that are needed for practical use.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.