Understanding the ultrafast processes corresponding to carrier capture, thermalization and relaxation is essential to design high speed optoelectronic devices. Here, we have investigated a size dependent carrier capture process in InGaN/GaN 20, 50 nm nanowires and quantum well systems. Femto-second transient absorption spectroscopy reveals that the carrier capture is a two-step process. The carriers are captured in the barrier by polar optical phonon (POP) scattering. They further scatter into the active region by electron–electron and POP scatterings. The capture is found to slow down for quantum confined structures. A significant number of carriers are found to disappear from the barrier during the diffusion process. All the experimental observations are explained in a simulation framework depicting various scattering mechanisms.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.