A standard paradigm when rendering for parallax-based light field displays is to render multiple, slightly offset views first and to interweave these afterwards. In practice, more than 40 views of preferably high resolution need to be rendered per frame to achieve acceptable visual quality. The total amount of rendered pixels may consequently exceed the native resolution of the display by far. Increased memory consumption and sub-optimal render times are direct consequences.
In this paper, we examine where pixels are "wasted" and present novel projective mappings for the virtual camera system that are custom tailored to such displays. Thus, we alleviate the aforementioned issues and show significant performance improvements regarding render time and memory consumption, while having only minor impact on visual quality. As we mainly touch the projective mapping of the virtual camera, our method is lean and can easily be integrated in existing rendering pipelines with minimal side effects.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.