Millimeter-wave (mmW) multi-input multi-output (MIMO) systems have gained increasing traction towards the goal of meeting the high data-rate requirements for next-generation wireless systems. The focus of this work is on low-complexity beamforming approaches for initial user equipment (UE) discovery in such systems. Towards this goal, we first note the structure of the optimal beamformer with per-antenna gain and phase control and establish the structure of good beamformers with perantenna phase-only control. Learning these right singular vector (RSV)-type beamforming structures in mmW systems is fraught with considerable complexities such as the need for a non-broadcast system design, the sensitivity of the beamformer approximants to small path length changes, inefficiencies due to power amplifier backoff, etc. To overcome these issues, we establish a physical interpretation between the RSV-type beamformer structures and the angles of departure/arrival (AoD/AoA) of the dominant path(s) capturing the scattering environment. This physical interpretation provides a theoretical underpinning to the emerging interest on directional beamforming approaches that are less sensitive to small path length changes. While classical approaches for direction learning such as MUltiple SIgnal Classification (MUSIC) have been well-understood, they suffer from many practical difficulties in a mmW context such as a non-broadcast system design and high computational complexity. A simpler broadcast-based solution for mmW systems is the adaptation of limited feedback-type directional codebooks for beamforming at the two ends. We establish fundamental limits for the best beam broadening codebooks and propose a construction motivated by a virtual subarray architecture that is within a couple of dB of the best tradeoff curve at all useful beam broadening factors. We finally provide the received SNR loss-UE discovery latency tradeoff with the proposed beam broadening constructions. Our results show that users with a reasonable link margin can be quickly discovered by the proposed design with a smooth roll-off in performance as the link margin deteriorates. While these designs are poorer in performance than the 2 RSV learning approaches or MUSIC for cell-edge users, their low-complexity that leads to a broadcast system design makes them a useful candidate for practical mmW systems.
Index TermsMillimeter-wave systems, MIMO, initial UE discovery, beamforming, beam broadening, MUSIC, right singular vector, noisy power iteration, sparse channels.
Millimeter-wave multi-input multi-output (mm-Wave MIMO) systems are one of the candidate schemes for 5G wireless standardization efforts. In this context, the main contributions of this article are threefold. 1) We describe parallel sets of measurements at identical transmit-receive location pairs with 2.9, 29 and 61 GHz carrier frequencies in indoor office, shopping mall, and outdoor settings. These measurements provide insights on propagation, blockage and material penetration losses, and the key elements necessary in system design to make mm-Wave systems viable in practice. 2) One of these elements is hybrid beamforming necessary for better link margins by reaping the array gain with large antenna dimensions. From the class of fully-flexible hybrid beamformers, we describe a robust class of directional beamformers towards meeting the high data-rate requirements of mm-Wave systems. 3) Leveraging these design insights, we then describe an experimental prototype system at 28 GHz that realizes high data-rates on both the downlink and uplink and robustly maintains these rates in outdoor and indoor mobility scenarios. In addition to maintaining large signal constellation sizes in spite of radio frequency challenges, this prototype leverages the directional nature of the mm-Wave channel to perform seamless beam switching and handover across mm-Wave base-stations thereby overcoming the path losses in non-line-of-sight links and blockages encountered at mm-Wave frequencies.
Index TermsMillimeter-wave, experimental prototype, MIMO, channel measurements, beamforming, handover, RF.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.