We report preliminary results on the analysis of the three-body Υ( 10860) → B Bπ, Υ(10860) → [B B * + c.c.]π and Υ(10860) → B * B * π decays including an observation of the Υ(10860) → Z ± b (10610)π ∓ → [B B * + c.c.] ± π ∓ and Υ(10860) → Z ± b (10650)π ∓ → [B * B * ] ± π ∓ decays as intermediate channels. We measure branching fractions of the three-body decays to be B(Υ(10860) → [B B * + c.c.] ± π ∓ ) = (28.3 ± 2.9 ± 4.6) × 10 −3 and B(Υ(10860) → [B * B * ] ± π ∓ ) = (14.1 ± 1.9 ± 2.4) × 10 −3 and set 90% C.L. upper limit B(Υ(10860) → [B B] ± π ∓ ) < 4.0 × 10 −3 . We also report results on the amplitude analysis of the three-body Υ(10860) → Υ(nS)π + π − , n = 1, 2, 3 decays and the analysis of the internal structure of the three-body Υ(10860) → h b (mP )π + π − , m = 1, 2 decays. The results are based on a 121.4 fb −1 data sample collected with the Belle detector at a center-of-mass energy near the Υ(10860).
Abstract. This paper overviews the present state of understanding on properties of the electrode material LiCo02 as well as the impact of these properties on the electrode performance in lithium batteries. The properties that are important for applications, such as structure, non-stoichiometry, defect chemistry and related electrical properties are considered.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.