Detailed characterization of fabric reinforcements is necessary to ensure the quality of manufactured composite parts, and subsequently to prevent structural failure during service. A lack of consensus and standardization exists in selecting test methods for the mechanical characterization of fabrics. Moreover, in reality, during any experimentation there are sources of uncertainties which may result in inconsistencies in the interpretation of data and the comparison of different testing methods. The aim of this article is to show how simple statistical data analysis methods may be used to enhance the characterization of composite fabrics under individual and combined loading modes while accounting for inherent material/test uncertainties. Results using a typical glass non-crimp fabric (NCF) show that, statistically, there are significant differences between the warp and weft direction responses of a presumably balanced NCF under all deformation modes, with weft yarns being generally stiffer. Moreover, the statistical significance of warp-weft couplings under both simultaneous and sequential biaxial-shear loading modes became statistically evident, when compared to a pure biaxial deformation.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.