A ZnO nanorods based superhydrophobic surface with extremely low roll-off values is fabricated using a two-step solution based approach-Successive Ionic Layer Adsorption and Reaction (SILAR) and Chemical Bath Deposition (CBD). The grown ZnO nanorods have average diameter of 285 nm with a predominant growth direction of [002]. The static contact angle of ZnO nanorods superhydrophobic surface is 155°, and the dynamic contact angles such as contact angle hysteresis and roll-off angle is 2° and 1° respectively. Furthermore, to comprehend the mechanism governing the extremely low roll-off angle of ZnO nanorods based superhydrophobic surface, Aan analytical model has been developed by incorporating the topographical (diameter, density of nanorods and solid area fraction) and droplet parameters (surface tension, mass and volume) to understand the mechanism associated with the extremely low roll-off angle of ZnO nanorods based superhydrophobic surface. The theoretically calculated roll-off angle closely matches with the experimental results and other reported results reported in the literature.
As the epidemic of coronavirus disease (COVID-19) has spread rapidly, health organizations around the world has made wearing face mask obligatory to prevent the spread of the infections for the wellness of the society. As wearing face masks become a daily routine, the usage of cloth facemasks from textile fabric, is popular among the public. Since antiquity, textiles have been proven to be intertwined with human lives and the integrant of these crucial materials are fibers. Particularly, nanofiber fabrics manufactured by electrospinning have attracted attention, owing to the better filtration efficiency and breathability. In addition, the electrospinning process provide opportunities to fine tuning of the surface functionality through polymer chemistry and an encapsulation of bioactive agents in single step process. This review opens up a new horizon in possible textile applications especially, an active layer of bioactive agent (Curcumin and Moringa) loaded nanofibrous fabrics-based facemasks for day to day life.
Zinc oxide-based superhydrophobic surfaces were fabricated on aluminium oxide-seeded glass substrates via sonochemical approach by varying the parameter, the sonication time duration. The fabricated structures have nanowall-like morphology with an average long axis length and thickness of ∼300 and ∼40 nm, respectively. The surface roughness created by surface-modified ZnO nanowalls and the air pockets trapped within the dense nanowalls, transformed the hydrophobic glass substrates into superhydrophobic surfaces with water contact angle of 156 • during 20 min of sonication. An independent analysis was carried out to study the growth of ZnO nanowalls over glass substrates in the absence of the aluminium oxide seed layer and sonication process. The results suggested that the synergistic effect of the aluminium oxide seed layer and sonochemical process can enable the formation of ZnO nanowall structures favourable for superhydrophobic property. A possible growth mechanism of ZnO nanowalls formation during sonication process has been discussed in detail.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.