A mapping technique is used to derive in the context of constituent quark models effective Hamiltonians that involve explicit hadron degrees of freedom. The technique is based on the ideas of mapping between physical and ideal Fock spaces and shares similarities with the quasiparticle method of Weinberg. Starting with the Fock-space representation of singlehadron states, a change of representation is implemented by a unitary transformation such that composites are redescribed by elementary Bose and Fermi field operators in an extended Fock space. When the unitary transformation is applied to the microscopic quark Hamiltonian, effective, hermitian Hamiltonians with a clear physical interpretation are obtained. Applications and comparisons with other composite-particle formalisms of the recent literature are made using the nonrelativistic quark model.
Academic Press
Starting from the Fock space representation of hadron bound states in a quark model, a change of representation is implemented by a unitary transformation such that the composite hadrons are redescribed by elementary-particle eld operators. Application of the unitary transformation to the microscopic quark Hamiltonian gives rise to eective hadron-hadron, hadron-quark, and quark-quark Hamiltonians. An eective baryon Hamiltonian is derived using a simple quark model. The baryon Hamiltonian is free of the post-prior discrepancy which usually plagues composite-particle eective i n teractions.
We analyze the role played by Long Distance Symmetries within the context of the Similarity Renormalization Group (SRG) approach, which is based on phase-shift preserving continuous unitary transformations that evolve hamiltonians with a cutoff on energy differences. We find that there is a SRG cutoff for which almost perfect fulfillment of Wigner symmetry is found. We discuss the possible consequences of such finding.
Effective interactions can be obtained from a renormalization group analysis in two complementary ways. One can either explicitly integrate out higher energy modes or impose given conditions at low energies for a cut-off theory. While the first method is numerically involved, the second one can be solved almost analytically. In both cases we compare the outcoming effective interactions for the two nucleon system as functions of the cut-off scale and find a strikingly wide energy region where both approaches overlap, corresponding to relevant scales in light nuclei Λ 200MeV. This amounts to a great simplification in the determination of the effective interaction parameters.
We study the infrared limit of the similarity renormalization group (SRG) using a simple toy model for the nuclear force aiming to investigate the fixed points of the SRG evolution with both the Wilson and the Wegner generators. We show how a fully diagonal interaction at the similarity cutoff λ → 0 may be obtained from the eigenvalues of the hamiltonian and quantify the diagonalness by means of operator norms. While the fixed points for both generators are equivalent when no bound-states are allowed by the interaction, the differences arising from the presence of the Deuteron bound-state can be disentangled very clearly by analyzing the evolved interactions in the infrared limit λ → 0 on a finite momentum grid. Another issue we investigate is the location on the diagonal of the hamiltonian in momentum-space where the SRG evolution places the Deuteron bound-state eigenvalue once it reaches the fixed point. This finite momentum grid setup provides an alternative derivation of the celebrated trace identities, as a by product. The different effects due to either the Wilson or the Wegner generators on the binding energies of A = 2, 3, 4 systems are investigated and related to the ocurrence of a Tjon-line which emerges as the minimum of an avoided crossing between E α = 4E t − 3E d and E α = 2E t . All infrared features of the flow equations are illustrated using the toy model for the two-nucleon S -waves.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.