Conventional solvent fractionation and bioactivity based target assays were used to identify a new anti-cancer molecule from Phyllanthus urinaria, a herbal medicinal plant used in South India. At each step of the purification process the different fractions that were isolated were tested for specific anti-proliferative activity by assays measuring the inhibition of [ 3 H]thymidine incorporation, and trypan blue drug exclusion. The ethyl acetate fraction that contained the bioactivity was further purified and resolved by HPLC on a preparative column. The purity of each of the fractions and their bioactivity were checked. Fraction 3 demonstrated a single spot on TLC and showed maximum anti-proliferative activity. This fraction was further purified and the structure was defined as 7'-hydroxy-3',4',5,9,9'-pentamethoxy-3,4-methylene dioxy lignan using NMR and mass spectrometry analysis. The pure compound and the crude ethyl acetate fraction which showed anti-proliferative activities were examined for ability to target specific markers of apoptosis like bcl2, c-myc and caspases and for effects on telomerase. Four specific cancer cell lines HEp2, EL-1 monocytes, HeLa and MCP7 were used in this study. The results indicate that 7'-hydroxy-3',4',5,9,9'-pentamethoxy-3,4-methylene dioxy lignan was capable of inhibiting telomerase activity and also could inhibit bcl2 and activate caspase 3 and caspase 8 whose significance in the induction of apoptosis is well known. We believe that this compound could serve as a valuable chemotherapeutic drug after further evaluations.
Vibrio parahaemolyticus is a natural microflora of marine and coastal water bodies and associated with mortality of larval shrimp in penaeid shrimp in ponds. Bacteriophages occur virtually in all places where their hosts exist. In this study, total distribution of V. parahaemolyticus and its phages were examined in shrimp ponds, seawater, estuary, animal surface, and tissues. Total vibrio count in sediments of two ponds was found to be 2.6 × 10(3) and 5.6 × 10(3) cfu/g. Incidence of V. parahaemolyticus in the ponds was close, while it was markedly higher in the animal surface and tissue samples. Biochemically identified eight strains of V. parahaemolyticus (V1, V3-V6, V9, V11, and V12) were taken for further infection studies with bacteriophage. Totally five bacteriophages capable of infecting V. parahaemolyticus MTCC-451 strain were isolated from all the samples. One of the isolated bacteriophage Vp1 from estuary was able to lyse all the isolated V. parahaemolyticus strains we used. Therefore, the morphology of Vp1 was estimated in TEM. Vp1 phage head measuring approximately about 50-60 nm diameter with icosahedral outline and a contractile tails of diameter 7 nm and length 100 nm and it was identified as Myoviridae. Therefore, the phages have the potential application in destroying bacterial pathogens.
The present study was designed to investigate the prophylactic effect of extracts of the brown alga Padina boergesenii against potent nephrotoxic agent ferric nitrilotriacetate (Fe-NTA), in blood circulation of rats. Administration of Fe-NTA for seven consecutive days significantly enhanced lipid peroxidation accompanied with reduction in glutathione content. Together with this, the level of antioxidant enzymes, glutathione peroxidase, superoxide dismutase, and catalase was significantly (P<0.05) diminished. Pretreatment of rats with P. boergesenii (150 mg kg −1 body weight) reversed Fe-NTA-induced oxidative damage in lipid peroxidation and glutathione content significantly (P<0.05). Further, the activity of antioxidant enzymes was also restored significantly. In order to assess the role of polyphenolic components in the relevant activity, phenolic contents of the extract was found to be 1.78±0.02% in the methanol extract and 1.30±0.30% in the diethyl ether extract. Hence, the present results confirm that the brown alga P. boergesenii preclude its role in Fe-NTAinduced oxidative damage and hyperproliferative response in circulation.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.