International audiencePolychloroprene rubbers are widely used in marine structures and often filled with silica in order to increase mechanical properties. The presence of silica fillers leads to a complex degradation of the material. This study aims to understand the deeper degradation mechanisms involved when a silica filled polychloroprene is used in sea water. To do so, 4 polychloroprene rubbers filled with different amounts of silica (from 0 to 45 phr) were aged in natural sea water for 6 months at temperatures ranging from 25 to 60 degrees C. Moreover, a natural rubber with similar formulation was also considered in order to evaluate the role of the chlorine atom in the degradation. The chemistry and mechanics of the rubber degradation were also studied. In the presence of water and silica fillers, a large decrease in rubber stiffness was observed. This was attributed to the breakage of hydrogen bonds involved in the interaction between the silica and chloroprene matrix and the process is reversible. In the meantime, silica undergoes hydrolysis that leads to silanol formation and so an increase in rubber stiffness when water is removed; this process is irreversible
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.