The magnetization process of the orthogonal-dimer antiferromagnet SrCu2(BO3)2 is investigated in high magnetic fields of up to 118 T. A 1/2 plateau is clearly observed in the field range 84 to 108 T in addition to 1/8, 1/4, and 1/3 plateaus at lower fields. Using a combination of state-of-the-art numerical simulations, the main features of the high-field magnetization, a 1/2 plateau of width 24 T, a 1/3 plateau of width 34 T, and no 2/5 plateau, are shown to agree quantitatively with the Shastry-Sutherland model if the ratio of inter- to intradimer exchange interactions J'/J=0.63. It is further predicted that the intermediate phase between the 1/3 and 1/2 plateaus is not uniform but consists of a 1/3 supersolid followed by a 2/5 supersolid and possibly a domain-wall phase, with a reentrance into the 1/3 supersolid above the 1/2 plateau.
A peak field of 1200 T was generated by the electromagnetic flux-compression (EMFC) technique with a newly developed megagauss generator system. Magnetic fields closely up to the turn-around peak were recorded by a reflection-type Faraday rotation magnetic-field optical-fiber probe. The performance was analyzed and compared with data obtained by the preceding EMFC experiments to show a significant increase in the liner imploding speed of up to 5 km/s.
The Faraday rotation and magneto-optical absorption spectral measurements were conducted to reveal the full-magnetization process and map out a magnetic phase diagram of a typical geometrical frustrated magnet, ZnCr(2)O(4), by using the electro-magnetic flux compression method in ultrahigh magnetic fields up to 600 T. A fully polarized ferromagnetic phase is observed in which the absorption spectra associated with an exciton-magnon-phonon transition disappears. Furthermore, prior to the fully polarized ferromagnetic phase above 410 T, we found a novel magnetic phase above 350 T at 4.6 K followed by a canted 3∶1 phase.
We experimentally demonstrate one-way transparency of light in multiferroic CuB(2)O(4). The material is rendered transparent for light propagating in one direction, while opaque for light propagating in the opposite direction. The novel transparency results from a destructive interference of the electric dipole and magnetic dipole transitions. The realization of the effect has been accomplished by the application of a high magnetic field and the proper selection of the propagation direction of light in agreement with our quantum mechanical formulation of nonreciprocal directional dichroism.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.