Fe–Al–Si-based thermoelectric (FAST) materials are non-toxic and low-cost materials that can be used for autonomous power supplies to drive internet-of-things wireless sensor devices. The conduction type can be controlled by changing the Al/Si ratio, which is suitable for fabricating reliable thermoelectric power-generation modules consisting of materials with similar thermal expansion coefficients. In this work, we evaluated the electronic structures of p- and n-type FAST materials with relatively large absolute values of the Seebeck coefficient by photoemission spectroscopy to obtain deeper insight into controlling the p-n characteristics of FAST materials. The core-level spectra suggested that the FAST materials have a covalent bonding nature. The chemical-potential shift should be the dominant factor of the core-level shift, which is consistent with the expected behavior of carrier doping of thermoelectric semiconductors, that is, rigid-band-like behavior. The size of the core-level shift of ~0.15 eV is close to the band gap of ~0.18 eV obtained from transport measurements. The observed electronic structure can qualitatively explain the experimental results.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.