The thermal diffusion behavior of ion-implanted Arsenic (As) in SiGeC alloy has been investigated and modeled. This paper introduces an empirical model consisting of physics-based and process-based parameters for evaluating the effective diffusivity of Arsenic in SiGeC accurately. The different process parameters that were found to affect the diffusivity were – Germanium content (x), diffusion temperature (T) and Carbon content (y). Germanium content taken into account was 7% and 12.3% for compressive strain in the structure with a Carbon content of 0.2%. The model incorporates all the effects associated with the change in the process parameters which affect the diffusivity of As in compressively strained-Si1-x-yGexCy. The model was found to be extremely accurate in predicting the exact dependencies of As diffusivity on physics-based and process parameters. The proposed empirical process model may find suitable application in the prediction of thermal diffusion behavior of As in Si1-x-yGexCyprocess-flow as well as in improving the existing model in Silvaco’s TCAD suite.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.