By use of the conventionally defined tibial plateau, data suggest that at approximately 90 degrees of flexion in stifle joints of dogs, shear force in the sagittal plane exerted on the proximal portion of the tibia shifts the loading from the cranial to the caudal cruciate ligament. Analyses involving the common tangent at the TFCP (a more anatomically representative reference point) identified this crossover point at approximately 110 degrees of joint flexion.
The fatigue failure of bone cement, leading to loosening of the stem, is likely to be one mode of failure of cemented total hip replacements. There is strong evidence that cracks in the cement are initiated at voids which act as stress risers, particularly at the cementstem interface. The preferential formation of voids at this site results from shrinkage during polymerisation and the initiation of this process at the warmer cementbone interface, which causes bone cement to shrink away from the stem. A reversal of the direction of polymerisation would shrink the cement on to the stem and reduce or eliminate the formation of voids at this interface. We have investigated this by implanting hip prostheses, at room temperature or preheated to 44°C, into human cadaver femora kept at 37°C. Two types of bone cement were either hand-mixed or vacuum-mixed before implantation. We found that the area of porosity at the cement-stem interface was dramatically reduced by preheating the stem and that the preheating temperature of 44°C determined by computer analysis of transient heat transfer was the minimum required to induce initial polymerisation at the cement-stem interface. Temperature measurements taken during these experiments in vitro showed that preheating of the stem caused a negligible increase in the temperature of the bone. Reduction of porosity at the cement-stem interface could significantly increase the life of hip arthroplasties.
The total surface stress measured in vitro on acetabular cartilage when step-loaded by an instrumented hemiprosthesis are partitioned into fluid and cartilage network stresses using a finite element model of the cartilage layer and measurements of the layer consolidation. The finite element model is based on in situ measurements of cartilage geometry and constitutive properties. Unique instrumentation was employed to collect the geometry and constitutive properties and pressure and consolidation data. When loaded, cartilage consolidates and exudes its interstitial fluid through and from its solid network into the inter-articular gap. The finite element solutions include the spatial distributions of fluid and network stresses, the normal flow velocities into the gap, and the contact network stresses at the cartilage surface, all versus time. Even after long-duration application of physiological-level force, fluid pressure supports 90 percent of the load with the cartilage network stresses remaining well below the drained modulus of cartilage. The results support the "weeping" mechanism of joint lubrication proposed by McCutchen.
In dogs, stifle joints with partially ruptured CrCLs have marginally larger angles between the patellar ligament and the tibial plateau, compared with joints with intact CrCLs; at equivalent angles of flexion, comparatively greater shear force affects the CrCLs in stifle joints with partial CrCL ruptures.
SummaryA proximal tibial osteotomy technique for the repair of complete or partial rupture of the cranial cruciate ligament in dogs is described and the results of a series of 100 consecutively operated stifle joints are presented. Although the majority of dogs regained full function of the operated limb within four months of surgery, the overall complication rate was high.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.