Dinoroseobacter shibae DFL12T , a member of the globally important marine Roseobacter clade, comprises symbionts of cosmopolitan marine microalgae, including toxic dinoflagellates. Its annotated 4 417 868 bp genome sequence revealed a possible advantage of this symbiosis for the algal host. D. shibae DFL12T is able to synthesize the vitamins B 1 and B 12 for which its host is auxotrophic. Two pathways for the de novo synthesis of vitamin B 12 are present, one requiring oxygen and the other an oxygen-independent pathway. The de novo synthesis of vitamin B 12 was confirmed to be functional, and D. shibae DFL12T was shown to provide the growth-limiting vitamins B 1 and B 12 to its dinoflagellate host. The Roseobacter clade has been considered to comprise obligate aerobic bacteria. However, D. shibae DFL12 T is able to grow anaerobically using the alternative electron acceptors nitrate and dimethylsulfoxide; it has the arginine deiminase survival fermentation pathway and a complex oxygen-dependent Fnr (fumarate and nitrate reduction) regulon. Many of these traits are shared with other members of the Roseobacter clade. D. shibae DFL12 T has five plasmids, showing examples for vertical recruitment of chromosomal genes (thiC) and horizontal gene transfer (cox genes, gene cluster of 47 kb) possibly by conjugation (vir gene cluster). The long-range (80%) synteny between two sister plasmids provides insights into the emergence of novel plasmids. D. shibae DFL12 T shows the most complex viral defense system of all Rhodobacterales sequenced to date.
Phaeobacter gallaeciensis, a member of the abundant marine Roseobacter clade, is known to be an effective colonizer of biotic and abiotic marine surfaces. Production of the antibiotic tropodithietic acid (TDA) makes P. gallaeciensis a strong antagonist of many bacteria, including fish and mollusc pathogens. In addition to TDA, several other secondary metabolites are produced, allowing the mutualistic bacterium to also act as an opportunistic pathogen. Here we provide the manually annotated genome sequences of the P. gallaeciensis strains DSM 17395 and 2.10, isolated at the Atlantic coast of north western Spain and near Sydney, Australia, respectively. Despite their isolation sites from the two different hemispheres, the genome comparison demonstrated a surprisingly high level of synteny (only 3% nucleotide dissimilarity and 88% and 93% shared genes). Minor differences in the genomes result from horizontal gene transfer and phage infection. Comparison of the P. gallaeciensis genomes with those of other roseobacters revealed unique genomic traits, including the production of iron-scavenging siderophores. Experiments supported the predicted capacity of both strains to grow on various algal osmolytes. Transposon mutagenesis was used to expand the current knowledge on the TDA biosynthesis pathway in strain DSM 17395. This first comparative genomic analysis of finished genomes of two closely related strains belonging to one species of the Roseobacter clade revealed features that provide competitive advantages and facilitate surface attachment and interaction with eukaryotic hosts.
The Roseobacter group and SAR11 clade constitute high proportions of the marine bacterioplankton, but only scarce information exists on the abundance of distinct populations of either lineage. Therefore, we quantified the abundance of the largest cluster of the Roseobacter group, the RCA (Roseobacter clade affiliated) cluster together with the SAR11 clade by quantitative PCR in the southern and eastern North Sea. The RCA cluster constituted up to 15 and 21% of total bacterial 16S ribosomal RNA (rRNA) genes in September 2005 and May 2006, respectively. At a few stations, the RCA cluster exceeded the SAR11 clade, whereas at most stations, SAR11 constituted higher fractions with maxima of 37%. In most samples, only one RCA ribotype was detected. RCA abundance was positively correlated with phaeopigments, chlorophyll, dissolved and particulate organic carbon (POC), turnover rates of dissolved free amino acids (DFAAs), temperature, and negatively correlated with salinity. The SAR11 clade was only correlated with POC (negatively, May) and with DFAA turnover rates (positively, September). An abundant RCA strain, 'Candidatus Planktomarina temperata', was isolated from the southern North Sea. This strain has an identical 16S rRNA gene sequence to the dominant RCA ribotype. Detection of the pufM gene, coding for a subunit of the reaction center of bacteriochlorophyll a, indicates the potential of the isolate for aerobic anoxygenic photosynthesis. Our study shows that a distinct population of the RCA cluster constitutes an abundant bacterioplankton group in a neritic sea of the temperate zone and indicates that this population has an important role during decaying phytoplankton blooms.
The marine heterotrophic roseobacter Phaeobacter gallaeciensis DSM 17395 was grown with glucose in defined mineral medium. Relative abundance changes of global protein (2-D DIGE) and metabolite (GC-MS) profiles were determined across five different time points of growth. In total, 215 proteins were identified and 147 metabolites detected (101 structurally identified), among which 60 proteins and 87 metabolites displayed changed abundances upon entry into stationary growth phase. Glucose breakdown to pyruvate apparently proceeds via the Entner-Doudoroff (ED) pathway, since phosphofructokinase of the Embden-Meyerhof-Parnas pathway is missing and the key metabolite of the ED-pathway, 2-keto-3-desoxygluconate, was detected. The absence of pfk in other genome-sequenced roseobacters suggests that the use of the ED pathway is an important physiological property among these heterotrophic marine bacteria. Upon entry into stationary growth phase (due to glucose starvation), sulfur assimilation (including cysteine biosynthesis) and parts of cell envelope synthesis (e.g. the lipid precursor 1-monooleoylglycerol) were down-regulated and cadaverine formation up-regulated. In contrast, central carbon catabolism remained essentially unchanged, pointing to a metabolic "stand-by" modus as an ecophysiological adaptation strategy. Stationary phase response of P. gallaeciensis differs markedly from that of standard organisms such as Escherichia coli, as evident e.g. by the absence of an rpoS gene.
Background Surgery is the main modality of cure for solid cancers and was prioritised to continue during COVID-19 outbreaks. This study aimed to identify immediate areas for system strengthening by comparing the delivery of elective cancer surgery during the COVID-19 pandemic in periods of lockdown versus light restriction. Methods This international, prospective, cohort study enrolled 20 006 adult (≥18 years) patients from 466 hospitals in 61 countries with 15 cancer types, who had a decision for curative surgery during the COVID-19 pandemic and were followed up until the point of surgery or cessation of follow-up (Aug 31, 2020). Average national Oxford COVID-19 Stringency Index scores were calculated to define the government response to COVID-19 for each patient for the period they awaited surgery, and classified into light restrictions (index <20), moderate lockdowns (20–60), and full lockdowns (>60). The primary outcome was the non-operation rate (defined as the proportion of patients who did not undergo planned surgery). Cox proportional-hazards regression models were used to explore the associations between lockdowns and non-operation. Intervals from diagnosis to surgery were compared across COVID-19 government response index groups. This study was registered at ClinicalTrials.gov , NCT04384926 . Findings Of eligible patients awaiting surgery, 2003 (10·0%) of 20 006 did not receive surgery after a median follow-up of 23 weeks (IQR 16–30), all of whom had a COVID-19-related reason given for non-operation. Light restrictions were associated with a 0·6% non-operation rate (26 of 4521), moderate lockdowns with a 5·5% rate (201 of 3646; adjusted hazard ratio [HR] 0·81, 95% CI 0·77–0·84; p<0·0001), and full lockdowns with a 15·0% rate (1775 of 11 827; HR 0·51, 0·50–0·53; p<0·0001). In sensitivity analyses, including adjustment for SARS-CoV-2 case notification rates, moderate lockdowns (HR 0·84, 95% CI 0·80–0·88; p<0·001), and full lockdowns (0·57, 0·54–0·60; p<0·001), remained independently associated with non-operation. Surgery beyond 12 weeks from diagnosis in patients without neoadjuvant therapy increased during lockdowns (374 [9·1%] of 4521 in light restrictions, 317 [10·4%] of 3646 in moderate lockdowns, 2001 [23·8%] of 11 827 in full lockdowns), although there were no differences in resectability rates observed with longer delays. Interpretation Cancer surgery systems worldwide were fragile to lockdowns, with one in seven patients who were in regions with full lockdowns not undergoing planned surgery and experiencing longer preoperative delays. Although short-term oncological outcomes were not compromised in those selected for surgery, delays and non-operations might lead to long-term reductions in survival. During current and future periods of societal restriction, the resilience of elective surgery systems requires strengthening, which might include...
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.