Abstract-Motivated by the fractal-like behavior of natural images, we develop a smoothing technique that uses a regularization functional which is a fractional iterate of the Laplacian. This type of functional was initially introduced by Duchon for the approximation of nonuniformily sampled, multidimensional data. He proved that the general solution is a smoothing spline that is represented by a linear combination of radial basis functions (RBFs). Unfortunately, this is tedious to implement for images because of the poor conditioning of RBFs and their lack of decay. Here, we present a much more efficient method for the special case of a uniform grid. The key idea is to express Duchon's solution in a fractional polyharmonic B-spline basis that spans the same space as the RBFs. This allows us to derive an algorithm where the smoothing is performed by filtering in the Fourier domain. Next, we prove that the above smoothing spline can be optimally tuned to provide the MMSE estimation of a fractional Brownian field corrupted by white noise. This is a strong result that not only yields the best linear filter (Wiener solution), but also the optimal interpolation space, which is not bandlimited. It also suggests a way of using the noisy data to identify the optimal parameters (order of the spline and smoothing strength), which yields a fully automatic smoothing procedure. We evaluate the performance of our algorithm by comparing it against an oracle Wiener filter, which requires the knowledge of the true noiseless power spectrum of the signal. We find that our approach performs almost as well as the oracle solution over a wide range of conditions. Index Terms-Fractal image model, multidimensional Wiener filter, optimal multidimensional linear filtering, polyharmonic smoothing splines.
Motivated by the fractal-like behavior of natural images, we propose a new smoothing technique that uses a regularization functional which is a fractional iterate of the Laplacian. This type of functional has previously been introduced by Duchon in the context of radial basis functions (RBFs) for the approximation of non-uniform data. Here, we introduce a new solution to Duchon's smoothing problem in multiple dimensions using non-separable fractional polyharmonic Bsplines. The smoothing is performed in the Fourier domain by filtering, thereby making the algorithm fast enough for most multi-dimensional real-time applications.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.