The western corn rootworm (Diabrotica virgifera virgifera LeConte, Col.; Chrysomelidae) is an alien invasive species in Europe. It is a univoltine species with eggs that overwinter in the soil and larvae that hatch in spring. Three larval instars feed on maize roots, which can cause plant lodging and yield loss of economic importance. Adults emerge between mid-June and early August and can reduce yields through intensive silk feeding. In order to provide a thorough understanding of the population dynamics of this invasive pest species in the invaded European region, complete age specific life-tables were constructed in two maize fields in southern Hungary assessing the significance of natural mortality factors acting on D. v. virgifera populations. This information provides a rational basis for devising sustainable integrated pest management programmes, in particular, by enabling the identification of vulnerable pest age intervals for the timely application of various management tools. The life-table for D. v. virgifera in Europe resulted in a total mortality of about 99% from the egg stage in the autumn to the emergence of adult females in the following year (K Total ¼ 2.48), which is comparable with North America. The highest reduction of D. v. virgifera numbers resulted from the mortality in first instar larvae (94% marginal death rate) and from the unrealized fecundity (80%). However, only the variation in mortality between years can change the generational mortality and thus influence population growth. High variation in the marginal death rate between fields and years was found in the second and third instar larval stages, and in the overwintering egg stage. These mortality factors therefore have the potential to cause changes in the total generational mortality. Furthermore, the life-table suggested that a high fecundity could compensate for a high generational mortality and would lead to population increase.
Modelling population dynamics of the maize pest Diabrotica virgifera virgifera LeConte (western corn rootworm; Coleoptera: Chrysomelidae) requires knowledge on the growth rate (=net reproductive rate) of the species. We investigated the generational (=annual) growth rate of D. v. virgifera in isolated maize fields in southern Hungary and eastern Croatia over several years. The population densities of D. v. virgifera were assessed by absolute counts of emerging adults in 90 gauze cages per study field. Emergence ranged from 1.3 to 30.7 adults per m 2 in continuous maize field sections, and from 0.3 to 5.1 adults per m 2 in adjacent first-year maize sections. The annual growth rates of D. v. virgifera ranged from 0.5 to 13, and averaged in close to 4. These experimentally assessed growth rates could complement growth estimates in population dynamic models, particularly those for forecasting the population growth to economic thresholds or for estimating population build-ups after new introductions of this alien species in Europe. As an example, the determined growth rate was used to estimate that the first documented successful introduction of this species into Europe occurred between 1979 and 1984, which is 8-13 years before the detection of this species and its larval damage in maize fields near Belgrade, Serbia, in 1992.
The Western Corn Rootworm, Diabrotica virgifera virgifera LeConte (Col., Chrysomelidae), is an invasive alien pest of maize, Zea mays, in Europe. The suitability of 14 fluorescent powders for mass-marking the adults was studied in laboratory and in field cages. The visual discrimination between remaining spots of each colour on the beetles was investigated under ultraviolet (UV) light, as well as their retention time and the influences of those colours on the beetle survival and flight take-off response. The two best recognizable orange colours (i.e. of Radiant Colour and of Fiesta Colours Swada) were proposed for field experiments in first priority, followed by an orange and a yellow (both Magruder Colour), another yellow (Fiesta) and a pink (Radiant), as all did not affect beetle survival and flight take-off response and were recognizable under UV light for at least 10 days in the field. In contrast, the colours yellow and green (Radiant), red and blue (Magruder), yellow (Ciba Geigy) and pink (Fiesta) were unsuitable, because they either quickly disappeared from the beetles or adversely affected beetle survival or flight take-off response. For mass releases with differently marked beetles, only the use of a single orange colour together with a single yellow colour or the use of a pink colour together with a yellow colour can be used since few spots can clearly be discriminated from each other under UV light.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.